[Math] Einstein Notation

differential-geometryindex-notationtensors

  1. Evaluate $$\delta^{i}_{j}\delta^{j}_{i}$$when $1\leq i,j \leq n$

  2. Simplify $$\delta^{a}_{b}g_{ca}g^{bd}\delta^{c}_{d}$$ when $a,b,c,d\in \{1,2,…,n\}$

  1. in Einstein notation a matrix as a linear transformation is written as $$A=a^{i}_{j}$$
    So $$\delta^{i}_{j}\delta^{j}_{i}=I$$ when I is the identity matrix.
    But on the other hand the index $j$ is used for summation so the answer will be $$\delta^{i}_{j}\delta^{j}_{i}=\delta^{i}_{i}+\delta^{i}_{i}+…+\delta^{i}_{i}(\text{n times})=1+1+…+1=n$$

What is the correct answer?

  1. $$\delta^{a}_{b}g_{ca}g^{bd}\delta^{c}_{a}=\delta_{b}g_{c}g^{b}\delta^{c}$$

How should I continue?

Best Answer

Mainly, the Kronecker delta makes sums collapse, making the two indexes equal everywhere else in the expression. For example: $$\delta_j^i \delta^j_i = \delta_i^i = n,$$and $$\delta^{\color{red}{a}}_{\color{blue}{b}}g_{c\color{red}{a}}g^{bd}\delta^{c}_{d} = g_{c\color{blue}{b}}g^{bd}\delta^c_d.$$I'll use colors again to ilustrate how this computation proceeds: $$g_{\color{red}{c}b}g^{bd}\delta_{\color{blue}{d}}^{\color{red}{c}} = g_{\color{blue}{d}b}g^{bd} \stackrel{(\ast)}{=} \delta_d^d = n,$$where in $(\ast)$ I used the definition of the inverse metric tensor.