Linear Algebra – Eigenvalues in Orthogonal Matrices

eigenvalues-eigenvectorslinear algebramatricesorthogonal matrices

Let $A \in M_n(\Bbb R)$.
How can I prove, that

1) if $ \forall {b \in \Bbb R^n}, b^{t}Ab>0$, then all eigenvalues $>0$.
2) if $A$ is orthogonal, then all eigenvalues are equal to $-1$ or $1$

Best Answer

Let $\lambda$ be $A$ eigenvalue and $Ax=\lambda{x}$.

(1) ${x}^{t}Ax=\lambda{x^tx}>0.$ Because $x^tx>0$, then $\lambda>0$

(2) $|\lambda|^2x^tx=(Ax)^{t}Ax={x}^{t}A^{t}Ax=x^tx.$ So $|\lambda|=1$. Then $\lambda=e^{i\phi}$ for some $\phi\in\mathbb{R}$; i.e. all the eigenvalues lie on the unit circle.