Sequences and Series – Double Summation Formula

sequences-and-seriessummation

As a follow to this answer I came across the double sum $$\sum_{m,n=1\, m\neq n}^\infty{\frac{m^2+n^2}{mn(m^2-n^2)^2}}.$$
But unfortunately I do not have skills in techniques to handle double summation .

Help appreciated.

I've made some research in MSE and found several questions which could be helpful:

1) $\sum_{m=1}^{\infty}\sum_{n=0}^{m-1}\frac{(-1)^{m-n}}{(m^2-n^2)^2}=-\frac{17\pi^4}{1440}$

2) $\sum_{m=1}^{\infty}\sum_{n=1}^{m-1}\frac{ 1}{m n\left(m^2-n^2\right)^2}=\frac{\pi^6}{12960}$

3) $\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{n^2k^2(n+k)^2}= \frac{1}{3}\zeta(6)$

Best Answer

The double summation is equal to $$\frac{11\zeta(4)}{8}=\frac{11\pi^4}{720}.$$

Note that $$\frac{m^2+n^2}{m n\left(m^2-n^2\right)^2}= \frac{1}{2 mn(m+n)^2}+ \frac{1}{2 mn(m-n)^2}.$$ Now consider the Tornheim double sums: $$T(a,b,c)= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^an^b(m+n)^c}.$$ Then $$ \sum_{m,n=1\, m\neq n}^{\infty} \frac{1}{mn(m+n)^2}=T(1,1,2)-\sum_{m=1}^{\infty}\frac{1}{4m^4}=T(1,1,2)-\frac{\zeta(4)}{4},$$ $$\begin{align} \sum_{m=1}^{\infty} \sum_{n=1}^{m-1} \frac{1}{mn(m-n)^2} &= \sum_{n=1}^{\infty} \sum_{m=n+1}^{\infty} \frac{1}{mn(m-n)^2}\\ &= \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{nk^2(n+k)}=T(1,2,1)\end{align}$$ and again $$ \sum_{m=1}^{\infty} \sum_{n=m+1}^{\infty} \frac{1}{mn(m-n)^2}=T(1,2,1).$$ Hence $$\begin{align}\sum_{m,n=1\, m\neq n}^{\infty}{\frac{m^2+n^2}{mn(m^2-n^2)^2}} &=\frac{T(1,1,2)-\zeta(4)/4}{2} +T(1,2,1)\\ &=\frac{11\zeta(4)}{8} \end{align}$$ where we used $$T(1,1,2)=\zeta(4)/2\quad,\quad T(1,2,1)=5\zeta(4)/2$$ (see page 31 in The evaluation of Tornheim double sums).