[Math] Double integral via Riemann sum

integrationriemann sumsummation

How do I integrate the function $f(x,y)=15(x^{2}+y^{2})$, in $Q=[0,1]\times[0,1]$ via Riemann sum?

I tried to get the partition
$$0=x_{0}<x_{1}<\ldots<x_{n}=1\quad\text{and}\quad 0=y_{0}<y_{1}<\ldots<y_{n}=1$$
and the
$$\Delta x=\Delta y=\frac{1}{n}$$
So,
\begin{align*}
\int\int_{Q}15(x^{2}+y^{2})dxdy & =\lim_{n\to\infty}\sum_{i=0}^{n}\sum_{j=0}^{n}f(i,j)\Delta x \Delta y \\
& = 15\cdot\lim_{n\to\infty}\sum_{i=0}^{n}\sum_{j=0}^{n}(i^{2}+j^{2})\Delta x\Delta y
\end{align*}
When I compute this double sum, I get
$$\frac{1}{3}n(n+1)^{2}(2n+1)$$
But when I substitute it and $\Delta x=\Delta y=1/n$, my limit goes to infinity. How do I fix it?

Thanks!

Best Answer

The correct Riemann sum is

$$S_n = \frac{15}{n^2}\sum_{i=1}^{n}\sum_{j=1}^{n}[(i/n)^2+(j/n)^2]=\frac{15}{n^4}\sum_{i=1}^{n}\sum_{j=1}^{n}(i^2+j^2)=\frac{15}{n^4}\frac{2n^2(n+1)(2n+1)}{6}.$$

Note that

$$\sum_{i=1}^{n}\sum_{j=1}^{n}(i^2+j^2)=\sum_{i=1}^{n}\left[ni^2+\frac{n(n+1)(2n+1)}{6}\right]=\frac{2n^2(n+1)(2n+1)}{6}.$$

Then

$$\lim_{n \rightarrow \infty}S_n = 5\lim_{n \rightarrow \infty}(1+1/n)(2+1/n)=10$$

Related Question