[Math] Double Integral Formula for Holomorphic Function on the Unit Disc (Complex Plain)

analysiscauchy-integral-formulacomplex numberscomplex-analysisgreen's theorem

While studying some complex analysis , I encountered the following problem:

"Let $f$ be a holomorphic function on the open unit disc $\mathbb{D}$.Prove that for every $\zeta \in \mathbb{D}$ the following formula is valid:
$f(\zeta)=\frac{1}{\pi} \int \int_{\mathbb{D}}\frac{f(z)}{(1-\bar{z}\zeta)^2}dxdy$ "

I tried this by using Green's Theorem and a Cauchy-Green theorem, but i ended up with a double integral expression of the form
$\int \int_{\mathbb{D}} \frac{\partial f}{\partial \bar{z}}\frac{1}{z-\zeta}dx dy$

Best Answer

Sketch: Assume first $f$ is holomorphic on a neighborhood of $\overline {\mathbb D}.$ Write $f(z) = \sum_{n=0}^{\infty}a_nz^n.$ Recall that

$$\frac{1}{(1-u)^2} =\sum_{n=0}^{\infty}(n+1)u^n.$$

Hence

$$\frac{1}{(1-\bar z{\zeta})^2} =\sum_{n=0}^{\infty}(n+1)(\bar z{\zeta})^n.$$

Now compute

$$\frac{1}{\pi}\int_{\mathbb D}\left (\sum_{n=0}^{\infty}a_nz^n \right )\left (\sum_{n=0}^{\infty}(n+1)(\bar z{\zeta})^n \right )\, dA(z)$$

using polar coordinates and orthogonality of the functions $z^n$ with respect to area measure on $\mathbb D.$ This works out nicely.

Related Question