[Math] Does absolute integrability imply integrability

complex-analysislebesgue-integralreal-analysis

I am quite confused about the notion of integrability. In the context of an introduction to complex analysis and Fourier transforms, I am told that if $f$, a complex or real valued function, satisfies the following:

$$ \int_{-\infty}^{\infty} \lvert f(x) \rvert dx<\infty$$

then it is absolutely integrable. However, does this also imply that $f$ is integrable? What can we conclude about $f$ given the above condition on its absolute value (or modulus). I have no notions of Lebesgue integrability.

Best Answer

A function $f$ is Lebesgue integrable iff its integral exists and $|\int f| <\infty$. However, an equivalent definition is the one you have give above.

For $f$ with a defined (Lebesgue) integral by definition we have $\int f = \int f^+ - \int f^-$. If $f$ is in addition integrable it then $\int f^+ <\infty$ and $\int f^- < \infty$ so $\int f^+ + \int f^- = \int |f| < \infty$ so where I have used the fact that $|f| =f^+ + f^ - $. Thus $|f|$ is integrable as all non-negative functions have a defined integral.

Conversely $|f|$ is integrable then $f^+ \leq |f|$ and $f^- \leq |f|$ so $ \int f^+ < \int |f| < \infty $ and $ \int f^- < \int |f| < \infty $ which implies both the negative and positive parts of $f$ are finite and the integral is thus just the difference of two positive real numbers, so is finite. Thus $f$ is integrable.

Related Question