[Math] Divergence Theorem when Surface isn’t closed

divergence-theoremmultivariable-calculussurface-integralsvector analysis

So we essentially want to evaluate $$\iint_S \vec{F} \cdot d\vec{S},$$ where $\vec{F} = \langle 2x+y, x^2+y, 3z \rangle$ and $S$ is the cylinder $x^2+y^2=4$, between the surfaces $z=0$ and $z=5$.

We have that the cylinder is open at the top and the bottom. Therefore, we cannot readily apply Gauss' Divergence theorem. We need to subtract the contributions given by the flux through the top and the bottom, from the volume integral. If we let the closed surface of the cylinder be represented by $S$, the bottom surface represented by $S_1$ and the top surface by $S_2$, we have that $$\iint_S \vec{F} \cdot n dS + \iint_{S_1} \vec{F} \cdot ndS + \iint_{S_2} \vec{F} \cdot nds = \iiint_V \nabla \cdot \vec{F} dV.$$ Computing the RHS gives us that $$\iiint_V \nabla \cdot \vec{F} dV = 120 \pi.$$ How do we compute $$\iint_{S_1} \vec{F} \cdot ndS$$ and $$\iint_{S_2} \vec{F} \cdot ndS ?$$ Perhaps $$\iint_{S_1} \vec{F} \cdot ndS = \iint_{S_1} \vec{F} \cdot \langle 0, 0, -1 \rangle dS = \iint_{S_1} -3z dS?$$

Best Answer

At the bottom of the cylinder, $z=0$. Since $F_z(x,y,0)=0$ we find

$$\begin{align} \int_{S_1} \vec F \cdot \hat n\, dS&=\int_{S_1}\vec F(x,y,0)\cdot \hat z\,dS\\\\ &=0 \end{align}$$

and there is no flux contributed.

At the top of the cylinder, $z=5$. Since $F_z(x,y,5)=15$ we find

$$\begin{align} \int_{S_2} \vec F \cdot \hat n\, dS&=\int_{S_2}\vec F(x,y,5)\cdot \hat z\,dS\\\\ &=\int_0^{2\pi}\int_0^2 (15)\,\rho\,d\rho\,d\phi\\\\ &=60\pi \end{align}$$

Putting it all together, we find

$$\begin{align} \int_S \vec F\cdot \hat n \,dS&=\int_V \nabla \cdot \vec F\,dV-\int_{S_2} \vec F \cdot \hat n\, dS-\int_{S_1} \vec F \cdot \hat n\, dS\\\\ &=120\pi-60\pi-0\\\\ &=60\pi \end{align}$$