[Math] Divergence of the product of a scalar and a tensor fields

calculusvector analysis

Let $\phi$ and $\mathbf S$ be smooth fields with $\phi$ scalar valued and $\mathbf S$ tensor valued. I would like to prove the following identity:

$$\mathrm{div}\phi\mathbf S=\mathbf S^T\mathrm{grad}\phi+\phi\,\mathrm{div}\mathbf S$$

My attempt:

\begin{align}
\mathrm{div}\phi\mathbf S=\frac{\partial}{\partial x_i}(\phi S_{ij})\mathbf{e}_j&=\frac{\partial\phi}{\partial x_i}S_{ij}\mathbf{e}_j+\phi\frac{\partial S_{ij}}{\partial x_i}\mathbf{e}_j\\
&=\frac{\partial\phi}{\partial x_i}S_{ij}\mathbf{e}_j+\phi\mathrm{div}\mathbf S
\end{align}

But I am stuck here since the definition of the gradient of a scalar field is $\mathrm{grad}\phi=\frac{\partial\phi}{\partial x_i}\mathbf{e}_i$.

I would appreciate any help or hint. Thank you.

Best Answer

Note that we have

$$\begin{align} \nabla \cdot (\phi \mathbf S)\cdot \hat x_i&=\partial_j(\phi S_{ji})\\\\ &=\phi \partial_j(S_{ji})+(\partial_j\phi)S_{ji}\\\\ &=\phi \partial_j(S_{ji})+(\partial_j\phi)S^T_{ij}\\\\ &=\phi \nabla \cdot (\mathbf S)\cdot \hat x_i+\mathbf S^T\cdot \nabla(\phi)\cdot \hat x_i \tag 1 \end{align}$$

Since $(1)$ is valid for all $i$, then

$$\nabla \cdot (\phi \mathbf S)=\phi \nabla \cdot (\mathbf S)+\mathbf S^T\cdot \nabla(\phi)$$

as was to be shown!