[Math] Divergence of $\sum\limits_{n=1}^{\infty} \frac{\cos(\log(n))}{n}$

divergent-serieslimitsreal-analysissequences-and-series

I'm struggling to prove that $$\sum \limits_{n=1}^{\infty} \frac{\cos(\log(n))}{n}$$ diverges.

Does anyone have any idea how to prove it? Breaking it into smaller pieces din't work. Maybe I should bound it with another series? But how?

Best Answer

For every $k$, define $$N_k=\lceil\exp(2k\pi-\pi/3)\rceil\qquad M_k=\lfloor\exp(2k\pi+\pi/3)\rfloor$$ Then, for every $k$ and every $N_k\leqslant n\leqslant M_k$, $$2\cdot\cos(\log n)\geqslant1$$ hence $$ 2\sum_{n=N_k}^{M_k}\frac{\cos(\log n)}n\geqslant\sum_{n=N_k}^{M_k}\frac1n\geqslant(M_k-N_k)\frac1{M_k}=1-\frac{N_k}{M_k} $$ Now, when $k\to\infty$, $$\frac{N_k}{M_k}=\mathrm e^{-2\pi/3}+o(1)$$ hence $$2\sum_{n=N_k}^{M_k}\frac{\cos(\log n)}n\geqslant1-\mathrm e^{-2\pi/3}+o(1)$$ Can you finish?

Related Question