[Math] Distribution of $Z = X+Y$ where $X$ and $Y$ are geometric random variables with different parameters $p_1$ and $p_2$

probabilityprobability distributions

Can you please help me out with following problem:

There are $2$ independent random variables geometric distributed, $X$ and $Y$.
They have different parameters $p_1$ and $p_2$, both from $(0,1)$ interval, $p_1\neq p_2$. How to find distribution of $Z$, where $Z = X + Y$ ?

If $p_1=p_2$, it would be negative binomial, but if $p_1\neq p_2$, I am not sure.

Thank you very much!

Best Answer

Suppose $\Pr[X = n] = p_1(1-p_1)^n$ and $\Pr[Y = n] = p_2(1-p_2)^n$ for $n = 0,1,2,\ldots$, where $p_1 \neq p_2$. Then, for any $n = 0,1,2,\ldots$, we have:

$\Pr[Z = n]$ $= \Pr[X+Y = n]$ $= \displaystyle\sum_{k = 0}^{n}\Pr[X = k \ \text{AND} \ Y = n-k]$

$\overset{(1)}{=} \displaystyle\sum_{k = 0}^{n}\Pr[X = k]\Pr[Y = n-k]$ $= \displaystyle\sum_{k = 0}^{n}p_1(1-p_1)^kp_2(1-p_2)^{n-k}$

$= p_1p_2(1-p_2)^n\displaystyle\sum_{k = 0}^{n}\left(\dfrac{1-p_1}{1-p_2}\right)^k$ $\overset{(2)}{=} p_1p_2(1-p_2)^n\dfrac{1-\left(\tfrac{1-p_1}{1-p_2}\right)^{n+1}}{1-\tfrac{1-p_1}{1-p_2}}$

$= p_1p_2\dfrac{(1-p_2)^{n+1}}{1-p_2}\dfrac{1-\left(\tfrac{1-p_1}{1-p_2}\right)^{n+1}}{1-\tfrac{1-p_1}{1-p_2}}$ $= \dfrac{p_1p_2\left[(1-p_2)^{n+1}-(1-p_1)^{n+1}\right]}{(1-p_2)-(1-p_1)}$

$= \dfrac{p_1p_2\left[(1-p_2)^{n+1}-(1-p_1)^{n+1}\right]}{p_1-p_2}$.

$(1)$ This follows since $X$ and $Y$ are independent.

$(2)$ Here, we have used the formula for the sum of a geometric series, and the fact that $p_1 \neq p_2$.

I'm not sure if this distribution has a name.