[Math] Directional derivative and Jacobian matrix

derivativesfrechet-derivativejacobianmultivariable-calculus

I have a problem with an exercise that goes as follows:

Let $\mathbf{f}$ be a $\mathbb{R}^n\rightarrow \mathbb{R}^m$ function and
$\mathbf{a}$ an interior point of the domain of $\mathbf{f}$. Let
$\mathbf{v} \in \mathbb{R}^n$ and $\|\mathbf{v}\| = 1$. The
directional derivative of $\mathbf{f}$ in $\mathbf{a}$ in the
direction of $\mathbf{v}$ is given by $$ \frac{\partial
\mathbf{f}}{\partial \mathbf{v}}(\mathbf{a}) := \lim_{t\to0,
t\in\mathbb{R}} \frac{\mathbf{f}(\mathbf{a}+t
\mathbf{v})-\mathbf{f}(\mathbf{a})}{t} \in \mathbb{R}^m. $$
Show that
if $\mathbf{f}$ is differentiable in $\mathbf{a}$, then the
directional derivate exists and is equal to
$D\mathbf{f}(\mathbf{a})\cdot\mathbf{v}$, with
$D\mathbf{f}(\mathbf{a})$ defined by: $$ D\mathbf{f}(\mathbf{a}) = \left( \begin{array}{ccc}{\frac{\partial f_{1}}{\partial
x_{1}}(\mathbf{a})} & {\cdots} & {\frac{\partial f_{1}}{\partial
x_{n}}(\mathbf{a})} \\ {\vdots} & {\ddots} & {\vdots} \\
{\frac{\partial f_{m}}{\partial x_{1}}(\mathbf{a})} & {\dots} &
{\frac{\partial f_{m}}{\partial x_{n}}(\mathbf{a})}\end{array}\right). $$

Could anyone help me with this proof?

Best Answer

Since $f$ is differentiable at $a$, then,$$\lim_{w\to0}\frac{\bigl\lVert f(a+w)-f(a)-Df(a)(w)\bigr\rVert}{\lVert w\rVert}=0.\tag1$$So, consider the vectors $w$ of the form $tv$, with $t\in\mathbb R$. You deduce then from $(1)$ that$$\lim_{t\to0}\frac{\bigl\lVert f(a+tv)-f(a)-Df(a)(tv)\bigr\rVert}{\lVert tv\rVert}=0.\tag2$$Clearly, $(2)$ is equivalent to$$\lim_{t\to0}\frac{f(a+tv)-f(a)-tDf(a)(v)}t=0.$$In other words,$$\lim_{t\to0}\frac{f(a+tv)-f(a)}t=Df(a)(v).\tag3$$But the LHS of $(3)$ is the directional derivative of $f$ in the direction of $v$. And, since$$\begin{bmatrix}{\frac{\partial f_{1}}{\partial x_{1}}(a)} & {\cdots} & {\frac{\partial f_{1}}{\partial x_{n}}(a)} \\ \vdots & \ddots & \vdots \\ {\frac{\partial f_{m}}{\partial x_{1}}(a)} & \cdots & {\frac{\partial f_{m}}{\partial x_{n}}(a)}\end{bmatrix}$$is the matrix of $Df(a)$ with respect to the canonical basis, the RHS of $(3)$ is$$\begin{bmatrix}{\frac{\partial f_{1}}{\partial x_{1}}(a)} & {\cdots} & {\frac{\partial f_{1}}{\partial x_{n}}(a)} \\ \vdots & \ddots & \vdots \\ {\frac{\partial f_{m}}{\partial x_{1}}(a)} & \cdots & {\frac{\partial f_{m}}{\partial x_{n}}(a)}\end{bmatrix}.v.$$

Related Question