[Math] Determining the domain of the adjoint of $T = i\frac{d}{dx}$ on $C^1[0,1] \subseteq L^2[0,1]$

adjoint-operatorsdifferential-operatorsfunctional-analysisoperator-theoryunbounded-operators

I have read this post Distinguishing between symmetric, Hermitian and self-adjoint operators

But I have some specific questions relating to the operator $$T : \psi \longmapsto i \frac{d}{dx} \psi(x).$$ This operator is symmetric, meaning that $\langle \psi, T\varphi \rangle = \langle T\psi, \varphi \rangle$ for all $\varphi, \psi \in D(T)$. I'm aware that $T$ will be self-adjoint if $D(T^{\ast}) \subset D(T)$. My question is, since we know that $T$ is symmetric, does that immediately give us that the formula for $T^{\ast}$ will be $T$ itself?

Moreover, if this is true, how do we determine the domain of $T^{\ast}$. For example, suppose the domain of $T$ is given to be $\psi \in C^1[0,1]$ with vanishing boundary conditions $\psi(0) = \psi(1) =0$. How do we determine the domain $D(T^{\ast}$)?

Best Answer

Maybe this argument works?

Integrating by parts, we see that $$T^{\ast} \psi = i \frac{d}{dx}\psi.$$ Now let $j(x)$ be any positive, smooth function with suppose $(-1,1)$ such that $\int_{-\infty}^{\infty} j(x) =1$. Define $j_{\epsilon}(x) := \epsilon^{-1} j(x/\epsilon)$. Fix $0 < \alpha < \beta < 1$ and define \begin{eqnarray*} f_{\epsilon}^{\alpha, \beta}(x) &=& j_{\epsilon}(x - \beta) - j_{\epsilon}(x- \alpha), \\ g_{\epsilon}^{\alpha, \beta}(x) &=& \int_0^x f_{\epsilon}^{\alpha, \beta}(t)dt. \end{eqnarray*} Let $\psi \in D(T^{\ast})$. For $\epsilon$ sufficiently small, $g_{\epsilon}^{\alpha, \beta} \in D(T)$ and $$(Tg_{\epsilon}^{\alpha, \beta}, \psi ) = (g_{\epsilon}^{\alpha, \beta}, T^{\ast}\psi ).$$ As $\epsilon \to 0$, $g_{\epsilon}^{\alpha, \beta} \to \chi_{(\alpha, \beta)} \in L^2(0,1)$, so $$(g_{\epsilon}^{\alpha, \beta}, T^{\ast} \psi) \longrightarrow - \int_{\alpha}^{\beta} (T^{\ast}\psi)(x) dx.$$ Moreover, if $\varphi \in C[0,1]$, then $$J_{\epsilon}\varphi = \int_0^1 j_{\epsilon}(x-t) \varphi(t)dt \xrightarrow{ \ \ L^2 \ \ } \varphi.$$ Further, we claim that $\| J_{\epsilon} \| \leq 1$. To see this, suppose that $\psi \in L^2[0,1]$, then \begin{eqnarray*} \left| (\psi, J_{\epsilon}\varphi) \right| & \leq & \iint j_{\epsilon}(x-t) \left| \varphi (t) \right| \left| \psi (x) \right| dx dt \\ &=& \iint j_{\epsilon}(y) \left| \varphi (t) \right| \left| \psi(y+t) \right| dy dt \\ & \leq & \| \varphi \| \| \psi \| \int j_{\epsilon}(y) dy \\ &=& \| \varphi \| \| \psi \|. \end{eqnarray*} By a simple $\epsilon/3$ argument, $J_{\epsilon} \varphi \to \varphi$ in $L^2$ for all $\varphi \in L^2[0,1]$. So $(Tg_{\epsilon}^{\alpha, \beta}, \psi) \to -i(\psi(\beta)- \psi(\alpha))$ in mean square as $\epsilon \to 0$. Therefore, for almost every $\alpha, \beta$, $$i(\psi(\beta) - \psi(\alpha)) = \int_{\alpha}^{\beta} (T^{\ast}\psi)(x)dx.$$ So $\psi$ is absolutely continuous and $$i \frac{d}{dx}\psi(x)= (T^{\ast}\psi)(x).$$ Conversely, integrating by parts, we see that if $\psi \in AC[0,1]$, then $\psi \in D(T^{\ast})$ and $T^{\ast} \psi = i \frac{d}{dx}$. We therefore conclude that $T^{\ast} = i d/dx$ and $D(T^{\ast}) = AC[0,1]$.

Reference: R&S 1.