Calculus – Deriving Mean and Variance of Laplace Distribution

calculusimproper-integralsintegrationprobability distributionsstatistics

It has been a long time since I have used calculus, and I am trying to understand how the mean and variance of the Laplace distribution with pdf
$$f(x|\mu,\sigma) = \dfrac{1}{2 \sigma}\,e^{-\Large\frac{|x-\mu |}\sigma}$$ are derived.

I know that E$[X] = \mu$ and Var$[X] = 2\sigma^2$, but I don't understand how that happens.

Many thanks.

Best Answer

Let $u=x-\mu$, then we have $x=u+\mu$ and $dx=du$. By linearity we have $\operatorname{E}[X]=\operatorname{E}[U+\mu]=\operatorname{E}[U]+\mu$, hence \begin{align} \operatorname{E}[X] &=\frac1{2\sigma}\int_{-\infty}^\infty u\ e^{-\Large\frac{|u|}{\sigma}}\ du+\mu\\ &=\frac1{2\sigma}\color{blue}{\underbrace{\color{black}{\int_{-\infty}^0 u\ e^{\Large\frac{u}{\sigma}}\ du}}_{\color{red}{\text{set}\ u=-u}}}+\frac1{2\sigma}\int_{0}^\infty u\ e^{-\Large\frac{u}{\sigma}}\ du+\mu\\ &=-\frac1{2\sigma}\int_{0}^\infty u\ e^{-\Large\frac{u}{\sigma}}\ du+\frac1{2\sigma}\int_{0}^\infty u\ e^{-\Large\frac{u}{\sigma}}\ du+\mu\\ &=\large\color{blue}{\mu} \end{align} and \begin{align} \operatorname{E}\left[X^2\right]&=\operatorname{E}\left[(U+\mu)^2\right]\\ &=\operatorname{E}\left[U^2\right]+2\mu\operatorname{E}\left[U\right]+\mu^2\\ &=\operatorname{E}\left[U^2\right]+2\mu\operatorname{E}\left[X-\mu\right]+\mu^2\\ &=\frac1{2\sigma}\int_{-\infty}^\infty u^2 e^{-\Large\frac{|u|}{\sigma}}\ du+\mu^2\\ &=\frac1{2\sigma}\color{blue}{\underbrace{\color{black}{\int_{-\infty}^0 u^2 e^{\Large\frac{u}{\sigma}}\ du}}_{\color{red}{\text{set}\ u=-u}}}+\frac1{2\sigma}\int_{0}^\infty u^2 e^{-\Large\frac{u}{\sigma}}\ du+\mu^2\\ &=\frac1{2\sigma}\int_{0}^\infty u^2 e^{-\Large\frac{u}{\sigma}}\ du+\frac1{2\sigma}\int_{0}^\infty u^2 e^{-\Large\frac{u}{\sigma}}\ du+\mu^2\\ &=\frac1{\sigma}\color{blue}{\underbrace{\color{black}{\int_{0}^\infty u^2 e^{-\Large\frac{u}{\sigma}}\ du}}_{\color{red}{\text{set}\ v=\frac{u}{\sigma}}}}+\mu^2\\ &=\sigma^2\int_{0}^\infty v^2 e^{-v}\ dv+\mu^2\\ &=2\sigma^2+\mu^2, \end{align} where $$ \Gamma(n+1)=\int_{0}^\infty v^{n} e^{-v}\ dv=n!\qquad,\qquad\text{for $n$ natural number}. $$ Thus \begin{align} \operatorname{Var}[X]&=\operatorname{E}\left[X^2\right]-\left(\operatorname{E}[X]\right)^2=\large\color{blue}{2\sigma^2}. \end{align}

Related Question