Topology – Definitions of Connected Space

connectednessgeneral-topology

I have seen several definitions of connected space, but I would like to discuss those from Wikipedia. I am concerned about these:

$X$ is disconnected, if it is the union of two disjoint nonempty open sets.

What about $[0,1] \cup [2,3] $ ? It is not the union of two disjoint nonempty open sets, so it is connected?

$X$ is connected, when it cannot be divided into two disjoint nonempty closed sets.

What about $(0,1) \cup (2,3) $ ? It cannot be divided into two disjoint nonempty closed sets, so it is connected?

Maybe I don't understand what "divided" means.

Best Answer

The problem is not with your understanding of divided, but rather with your understanding of closed. In the space $X=(0,1)\cup(2,3)$, the sets $(0,1)$ and $(2,3)$ are closed. This is because the topology $\tau$ on $X$ is the subspace (or relative) topology inherited from $\Bbb R$. A subset $U$ of $X$ is open in $X$ if and only if there is a $V\subseteq\Bbb R$ such that $V$ is open in $\Bbb R$ and $V\cap X=U$. Of course $(0,1)$ is open in $\Bbb R$, and $(0,1)\cap X=(0,1)$, so $(0,1)$ is open in $X$. By the definition of closed set this means that $X\setminus(0,1)$ is closed in $X$. And $X\setminus(0,1)=(2,3)$, so $(2,3)$ is closed in $X$. A similar argument shows that $(0,1)$ is also closed in $X$. Indeed, both of these sets are clopen (closed and open) as subsets of $X$, even though they are only open as subsets of $\Bbb R$. Openness and closedness depend not just on the set, but on the space in which it is considered.

You have the same problem with your first example: the sets $[0,1]$ and $[2,3]$ are clopen in the subspace $Y=[0,1]\cup[2,3]$ of $\Bbb R$, not just closed. For example, $[0,1]=\left(-\frac12,\frac32\right)\cap Y$, and $\left(-\frac12,\frac32\right)$ is open in $\Bbb R$, so $[0,1]$ is open in $Y$.

Related Question