[Math] Definite Integration with Trigonometric Substitution

calculusdefinite integralsintegration

I'm working on a question that involves using trigonometric substitution on a definite integral that will later use u substitution but I am not sure how to go ahead with this.

$$\int_1^2\frac1{x^2\sqrt{4x^2+9}}dx$$

My first step was to use $\sqrt{a^2+x^2}$ as $x=a\tan\theta$ to get…

$$2x=3\tan\theta :x=\frac32\tan\theta$$
$$dx=\frac32\sec^2\theta$$

Substituting:

$$\int\frac{\frac32\sec^2\theta}{\frac94\tan^2\theta\sqrt{9\tan^2\theta+9}}$$

The problem here is how do I change the limit it goes to?

$$\frac43=\tan\theta$$
and
$$\frac23=\tan\theta$$

Following DR.MV's answer so far..

$$\frac29\int_{\tan^-1(\frac23)}^{\tan^-1(\frac43)}\frac{\sec^2\theta}{\tan^2\theta\sqrt{9\sec^2\theta}}d\theta$$

$$=\frac29\int_{\tan^-1(\frac23)}^{\tan^-1(\frac43)}\frac{\sec\theta}{\tan^2\theta}d\theta$$

$$=\frac29\int_{\tan^-1(\frac23)}^{\tan^-1(\frac43)}\frac{\cos\theta}{\sin^2\theta}d\theta$$

Now $u=\sin\theta$ so $du=\cos\theta d\theta$

$$=\frac29\int_{?}^{?}\frac{1}{u^2}du$$

This is where I am stuck now…

Best Answer

There was a typo in the current post. After enforcing the substitution $2x=3\tan \theta$, the integral ought to read

$$\begin{align}I&=\int_{\arctan(2/3)}^{\arctan(4/3)}\frac{\frac32 \sec^2\theta}{\frac94 \tan^2\theta\sqrt{9\tan^2\theta+9}}d\theta\\\\ &=\frac29 \int_{\arctan(2/3)}^{\arctan(4/3)}\frac{ \sec^2\theta}{ \tan^2\theta\,\sec \theta}d\theta\\\\ &=\frac29 \int_{\arctan(2/3)}^{\arctan(4/3)}\frac{ \sec^2\theta}{ \tan^2\theta\,\sec \theta}d\theta\\\\ &=\frac29 \int_{\arctan(2/3)}^{\arctan(4/3)}\cot \theta \csc \theta d\theta\\\\ &=\frac29 \left.(-\csc \theta)\right|_{\arctan(2/3)}^{\arctan(4/3)}\\\\ &=\frac{\sqrt{13}}{9}-\frac{5}{18}\end{align}$$


NOTES:

Remark 1: When making a substitution of variables in a definite integral, the limits of integration change accordingly. In this example, the substitution was $x=\frac32 \tan \theta$. When $x=1$ at the lower limit, $\tan \theta =\frac23\implies \theta =\arctan(2/3)$. Similarly, when $x=2$ at the upper limit, $\tan \theta =\frac43\implies \theta =\arctan(4/3)$.

Remark 2:
To evaluate $\sin (\arctan(2/3))$, we recall that the arctangent is an angle whose tangent is $2/3$. A picture sometimes facilitates the analysis wherein we draw a right triangle with vertical side of length $2$ and horizontal side of length $3$ forming a right angle.

Note that the angle the hypotenuse makes with the horizontal side is $\arctan(2/3)$. Inasmcuh as the hypotenuse is of length $\sqrt{2^2+3^2}=\sqrt{13}$, we see $\sin(\arctan(2/3))=\frac{2}{\sqrt{13}}$ and thus $\csc (\arctan(2/3))=\frac{\sqrt{13}}{2}$.

Related Question