Proof Verification – De Morgan Law $A\setminus (B \cap C) = (A\setminus B) \cup (A\setminus C)$

elementary-set-theoryproof-verification

First part :

I want to prove the following De Morgan's law : ref.(dfeuer)

$A\setminus (B \cap C) = (A\setminus B) \cup (A\setminus C) $


Second part:

Prove that $(A\setminus B) \cup (A\setminus C) = A\setminus (B \cap C) $


Proof:

Let $y\in (A\setminus B) \cup (A\setminus C)$

$(A\setminus B) \cup (A\setminus C) = (y \in A\; \land y \not\in
B\;) \vee (y \in A\; \land y \not\in C\;)$

$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= y \in A\ \land (
y \not\in B\; \vee \; y \not\in C ) $

$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= y \in A \land
(\lnot ( y\in B) \lor \lnot( y\in C) )$

According to De-Morgan's theorem :

$\lnot( B \land C) \Longleftrightarrow (\lnot B \lor \lnot C)$ thus

$y \in A \land (\lnot ( y\in B) \lor \lnot( y\in C) ) = y \in A \land y \not\in (B \land C)$

We can conclude that $(A\setminus B) \cup (A\setminus C) = A\setminus (B \cap C)$

Best Answer

I'll guide you through one direction. You will need to figure the other out yourself.

Let $x\in A \setminus (B\cap C)$.

Then by the definition of $\setminus$, $x\in A$ and $x\notin B\cap C$. The latter statement can be translated into $\lnot (x \in B \cap C)$.

By the definition of $B\cap C$, $x\in B\cap C \iff (x \in B) \land (x\in C)$.

Thus we conclude that $\lnot ((x \in B) \land (x\in C))$.

By De Morgan's laws for logic, we can rewrite this as $\lnot(x\in B)\lor\lnot(x\in C)$.

Suppose that $\lnot (x\in B)$. Then since $x\in A$, $x\in A\setminus B$.

Suppose instead that $\lnot (x \in C)$. Then since $x\in A$, $x\in A \setminus C$.

As one of these must be true, $(x\in A\setminus B)\lor (x\in A \setminus C)$.

By the definition of union, $x\in (A\setminus B)\cup(A \setminus C)$.

Related Question