[Math] D.c’s of angular bisector of two lines in 3D

3dgeometry

If $\theta$ be the angle between two straight lines having d.c's $l_1 , m_1 , n_1$ and $l_2 , m_2 , n_2$ then prove that the d.c's of the angle bisectors of the two lines are $$\frac{l_1+l_2}{2\cos\frac{1}{2}\theta}, \frac{m_1+m_2}{2\cos\frac{1}{2}\theta}, \frac{n_1+n_2}{2\cos\frac{1}{2}\theta}$$ and $$\frac{l_1-l_2}{2\sin\frac{1}{2}\theta}, \frac{m_1-m_2}{2\sin\frac{1}{2}\theta}, \frac{n_1-n_2}{2\sin\frac{1}{2}\theta}$$

I know that if $\vec x$ and $\vec y$ be two vectors then vector through their angular bisector is $|y|\vec x + |x|\vec y$. From here I proved the equation of angle bisector of two lines having direction vectors $\vec b_1$, $\vec b_2$ is $\vec r = \vec p + k \vec z_1$ and $\vec r = \vec p + k \vec z_2$ where $\vec z_1 = \hat b_1+\hat b_2$ and $\vec z_2= \hat b_1- \hat b_2$ and $\vec p $ is position vector of the point where two lines intersect each other. But from here what to do?

Best Answer

As $\vec v_1=(l_1,m_1,n_1)$ and $\vec v_2=(l_2,m_2,n_2)$ are two unit vectors, then the unit vector along their angle bisector is simply $$ \vec v={\vec v_1+\vec v_2\over|\vec v_1+\vec v_2|} ={\vec v_1+\vec v_2\over\sqrt{|\vec v_1|^2+|\vec v_2|^2+2\vec v_1\cdot\vec v_2}} ={\vec v_1+\vec v_2\over\sqrt{2+2\cos\theta}} ={\vec v_1+\vec v_2\over2\cos(\theta/2)}. $$ The other formula is analogous, once you see that $\vec v_1-\vec v_2$ is perpendicular to $\vec v_1+\vec v_2$.

Related Question