Linear Algebra – Cross Product in Higher Dimensions

cross productlinear algebramultilinear-algebraorthogonalityvectors

Suppose we have a vector $(a,b)$ in $2$-space. Then the vector $(-b,a)$ is orthogonal to the one we started with. Furthermore, the function $$(a,b) \mapsto (-b,a)$$ is linear.

Suppose instead we have two vectors $x$ and $y$ in $3$-space. Then the cross product gives us a new vector $x \times y$ that's orthogonal to the first two. Furthermore, cross products are bilinear.

Question. Can we do this in higher dimensions? For example, is there a way of turning three vectors in $4$-space into a fourth vector, orthogonal to the others, in a trilinear way?

Best Answer

Yes. It is just like in dimension $3$: if your vectors are $(t_1,t_2,t_3,t_4)$, $(u_1,u_2,u_3,u_4)$, and $(v_1,v_2,v_3,v_4)$, compute the formal determinant:$$\begin{vmatrix}t_1&t_2&t_3&t_4\\u_1&u_2&u_3&u_4\\v_1&v_2&v_3&v_4\\e_1&e_2&e_3&e_4\end{vmatrix}.$$ You then see $(e_1,e_2,e_3,e_4)$ as the canonical basis of $\mathbb{R}^4$. Then the previous determinant is $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ with\begin{align*}\alpha_1&=t_4u_3v_2-t_3u_4v_2-t_4u_2v_3+t_2u_4v_3+t_3u_2v_4-t_2u_3v_4\\\alpha_2&=-t_4u_3v_1+t_3u_4v_1+t_4u_1v_3-t_1u_4v_3-t_3u_1v_4+t_1u_3v_4\\\alpha_3&=t_4u_2v_1-t_2u_4v_1-t_4u_1v_2+t_1u_4v_2+t_2u_1v_4-t_1u_2v_4\\\alpha_4&=-t_3u_2v_1+t_2u_3v_1+t_3u_1v_2-t_1u_3v_2-t_2u_1v_3+t_1u_2v_3\end{align*}It's a vector orthogonal to the other three.


I followed a suggestion taken from the comments on this answer: to put the entries $e_1$, $e_2$, $e_3$, and $e_4$ at the bottom. It makes no difference in odd dimension, but it produces the natural sign in even dimension.

Following another suggestion, I would like to add this remark:$$\alpha_1=-\begin{vmatrix}t_2&t_3&t_4\\u_2&u_3&u_4\\v_2&v_3&v_4\end{vmatrix}\text{, }\alpha_2=\begin{vmatrix}t_1&t_3&t_4\\u_1&u_3&u_4\\v_1&v_3&v_4\end{vmatrix}\text{, }\alpha_3=-\begin{vmatrix}t_1&t_2&t_4\\u_1&u_2&u_4\\v_1&v_2&v_4\end{vmatrix}\text{ and }\alpha_4=\begin{vmatrix}t_1&t_2&t_3\\u_1&u_2&u_3\\v_1&v_2&v_3\\\end{vmatrix}.$$

Related Question