[Math] convolution of compactly supported continuous function with schwartz class function is again a Schwartz class function

analysisconvolutionfourier analysisreal-analysis

Suppose $f$ is continuous function on $\mathbb R$ with compact support; and $g\in \mathcal{S}(\mathbb R),$ (Schwartz space)

My Question is: Can we expect $f\ast g \in \mathcal{S(\mathbb R)}$ ? (Bit roughly speaking, convolution of compactly supported continuous function with schwartz class function is again a Schwartz class function )

[We note that convolution of arbitrary continuous function with schwartz class function need not be Schwartz class function, for instance, see this question, ]

Thanks,

Best Answer

Yes, the convolution of an integrable function $f$ with compact support, and a Schwartz class function $g$ belongs to the Schwartz space again.

Since all derivatives of Schwartz class functions belong to the Schwartz space, in particular are bounded, the convolution

$$(f\ast g)(x) = \int f(y)g(x-y)\,dy$$

is smooth, since the dominated convergence theorem allows differentiating under the integral arbitrarily often. (Since the difference quotients of $\partial^\alpha g$ converge uniformly on $\mathbb{R}$, and the support of $f$ is compact, one can get that result also without the dominated convergence theorem.)

So only the decay remains to be checked. Choose $K > 0$ such that $\operatorname{supp} f \subset [-K,K]$. Since $g\in \mathcal{S}(\mathbb{R})$, for every $\alpha,m\in\mathbb{N}$ there is a constant $C_{\alpha,m}$ such that

$$\lvert \partial^\alpha g(x)\rvert \leqslant \frac{C_{\alpha,m}}{(1+\lvert x\rvert)^m}$$

for all $x\in\mathbb{R}$.

Then for $\lvert x\rvert \geqslant 2K$ we have

$$\begin{align} \lvert \partial^\alpha(f\ast g)(x)\rvert &= \left\lvert \int_{-K}^K f(y) \partial^\alpha g(x-y)\,dy \right\rvert\\ &\leqslant \int_{-K}^K \lvert f(y)\rvert\, \lvert \partial^\alpha g(x-y)\rvert\,dy\\ &\leqslant \int_{-K}^K \lvert f(y)\rvert \frac{C_{\alpha,m}}{(1+\lvert x-y\rvert)^m}\,dy\\ &\leqslant \int_{-K}^K \lvert f(y)\rvert \frac{C_{\alpha,m}}{\left(1 + \frac{\lvert x\rvert}{2}\right)^m}\,dy\\ &= \frac{2^mC_{\alpha,m}}{(2+\lvert x\rvert)^m}\int_{-K}^K\lvert f(y)\rvert\,dy\\ &\leqslant \frac{C'_{\alpha,m}}{(1+\lvert x\rvert)^m}, \end{align}$$

where $C'_{\alpha,m} = 2^m\lVert f\rVert_{L^1}C_{\alpha,m}$.

Since $(1+\lvert x\rvert)^m \partial^\alpha(f\ast g)(x)$ is continuous, it is bounded on the compact set $[-K,K]$, hence we have

$$(1+\lvert x\rvert)^m\lvert\partial^\alpha(f\ast g)(x)\rvert \leqslant \tilde{C}_{\alpha,m}$$

for all $x\in\mathbb{R}$ and some constant $\tilde{C}_{\alpha,m}$.

So $f\ast g$ is a smooth function such that $x^m\partial^\alpha(f\ast g)(x)$ is bounded for all $\alpha,m\in\mathbb{N}$, and that means precisely $f\ast g\in \mathcal{S}(\mathbb{R})$.

The generalisation to $\mathbb{R}^n$ is immediate.

Related Question