[Math] Convergent iff lim-inf=lim-sup

real-analysis

Let $(x_n)$ be a bounded sequence.
Then $(x_n)$ converges iff $\limsup_{n\to\infty}x_n=\liminf_{n\to\infty}x_n$

I try to prove the $\Rightarrow$ direction first. Then I realize I have to prove $|\sup\limits_{k\ge n} x_k-x_n|\lt\epsilon$

I try to assume $\sup\limits_{k\ge n}x_k-x_n\ge\epsilon$, how can I show the contradiction?

Thank you!

Best Answer

A proof using context of subsequence for your reference:

($\Leftarrow$)Let $x_{n_k}$ be a convergent subsequence of $x_n$, then
$$\inf \{x_n:n\ge n_j\}\le x_{n_j}\le \sup\{x_{n}:n\ge n_j\}\text{ , }\forall j$$ $$\Rightarrow \lim\inf x_n\le\lim x_{n_k}\le \lim\sup x_n$$ So all convergent subsequence of $x_n$ converge to $\lim \sup x_n=\lim \inf x_n=x^*$, therefore $x_n$ converge to $x^*$

($\Rightarrow$)Let $x_n$ be a convergent sequence with limit $x^*$, then all subsequence of $x_n$ would converge to $x^*$, and the set of all subsequential limit is a singleton $\{x^*\}$. Note $\lim \sup x_n$ denotes the supremum of the set of subsequential limit and $\lim \inf x_n$ denotes the infimum of the set of subsequential limit, it follows that $$\lim \inf x_n=\lim \sup x_n=x^*$$

Related Question