Functional Analysis – Contraction Mapping in an Incomplete Metric Space

fixed-point-theoremsfunctional-analysismetric-spaces

Let us consider a contraction mapping $f$ acting on metric space $(X,~\rho)$ ($f:X\to X$ and for any $x,y\in X:\rho(f(x),f(y))\leq k~\rho(x,y),~ 0 < k < 1$). If $X$ is complete, then there exists an unique fixed point. But is there an incomplete space for which this property holds as well? I think $X$ should be something like graph of $\text{sin}~{1\over x}$, but I don't know how to prove it.

Thank you and sorry for my english.

Best Answer

Section 4 of this paper of Suzuki and Takahashi gives an example of a metric space -- in fact, a subspace of the Euclidean plane (so it seems you were on the right track!) -- which is incomplete but for which every contraction mapping has a fixed point.

They go on to repair matters by defining a "weakly contractive mapping" and showing that a metric space is complete iff every weakly contractive mapping has a fixed point.

Note: I was not aware of this paper until I read this question. I then googled -- contraction mapping, characterization of completeness -- and the paper showed up right away. (I look forward to reading it more carefully when I get the chance...)