[Math] Continuity of the (real) $\Gamma$ function.

gamma functionlebesgue-integralreal-analysis

Consider the real valued function
$$\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt$$
where the above integral means the Lebesgue integral with the Lebesgue measure in $\mathbb R$. The domain of the function is $\{x\in\mathbb R\,:\, x>0\}$, and now I'm trying to study the continuity. The function $$t^{x-1}e^{-t}$$
is positive and bounded if $x\in[a,b]$, for $0<a<b$, so using the dominated convergence theorem in $[a,b]$, I have:

$$\lim_{x\to x_0}\Gamma(x)=\lim_{x\to x_0}\int_0^{\infty}t^{x-1}e^{-t}dt=\int_0^{\infty}\lim_{x\to x_0}t^{x-1}e^{-t}dt=\Gamma(x_0)$$

Reassuming $\Gamma$ is continuous in every interval $[a,b]$; so can I conclude that $\Gamma$ is continuous on all its domain?

Best Answer

You could also try the basic approach by definition.

For any $\,b>0\,\,\,,\,\,\epsilon>0\,$ choose $\,\delta>0\,$ so that $\,|x-x_0|<\delta\Longrightarrow \left|t^{x-1}-t^{x_0-1}\right|<\epsilon\,$ in $\,[0,b]\,$ : $$\left|\Gamma(x)-\Gamma(x_0)\right|=\left|\lim_{b\to\infty}\int\limits_0^b \left(t^{x-1}-t^{x_0-1}\right)e^{-t}\,dt\right|\leq$$

$$\leq\lim_{b\to\infty}\int\limits_0^b\left|t^{x-1}-t^{x_0-1}\right|e^{-t}\,dt<\epsilon\lim_{b\to\infty}\int\limits_0^b e^{-t}\,dt=\epsilon$$