[Math] Conjugation with Pauli matrices

linear algebramatricesvector-spaces

Let $\{\sigma_j\}_{j=0}^3$ denote the Pauli basis of Hermitian matrices on $\mathbb C^2$ with $\sigma_0 := I$. Is it true that $$\frac{1}{4}\sum_{j=0}^3 \sigma_j A \sigma_j = \frac{\text{tr}(A)}{2}I$$ for any positive definite $2×2$ matrix $A$? If so, how would I go about showing this? I haven't been able to do so with the known properties of the Pauli matrices.

Best Answer

To prove the proposed equality I will be using the eigenvalue decomposition of the Pauli matrices, which are

  • $I=\sigma_0=|0\rangle\langle0|+|1\rangle\langle1|$
  • $X=\sigma_1=|0\rangle\langle1|+|1\rangle\langle0|$
  • $Y=\sigma_2=i(|1\rangle\langle0|-|0\rangle\langle1|)$
  • $Z=\sigma_3=|0\rangle\langle0|-|1\rangle\langle1|$

where $|0\rangle=\begin{pmatrix}1 \\ 0\end{pmatrix}$ and $|1\rangle=\begin{pmatrix}0 \\ 1\end{pmatrix}$. Now developing the first part of the equality proposed by using the above relationships:

\begin{equation} \begin{split} \frac{1}{4}\sum_{j=0}^3\sigma_jA\sigma_j &=\frac{1}{4}(\sigma_0A\sigma_0+\sigma_1A\sigma_1+\sigma_2A\sigma_2+\sigma_3A\sigma_3) \\ & = \frac{1}{4}[(|0\rangle\langle0|+|1\rangle\langle1|)A|(0\rangle\langle0|+|1\rangle\langle1|)+(|0\rangle\langle1|+|1\rangle\langle0|)A(|0\rangle\langle1|+|1\rangle\langle0|)\\\ & +i^2(|1\rangle\langle0|-|0\rangle\langle1|)A(|1\rangle\langle0|-|0\rangle\langle1|)+(|0\rangle\langle0|-|1\rangle\langle1|)A(|0\rangle\langle0|-|1\rangle\langle1|)]\\ & =\frac{1}{4}[|0\rangle\langle0|A|0\rangle\langle0|+|0\rangle\langle0|A|1\rangle\langle1|+|1\rangle\langle1|A|0\rangle\langle0|+|1\rangle\langle1|A|1\rangle\langle1| \\ & + |0\rangle\langle1|A|0\rangle\langle1|+|0\rangle\langle1|A|1\rangle\langle0|+|1\rangle\langle0|A|0\rangle\langle1|+|1\rangle\langle0|A|1\rangle\langle0| \\ & - (|1\rangle\langle0|A|1\rangle\langle0|+|1\rangle\langle0|A|0\rangle\langle1|+|0\rangle\langle1|A|1\rangle\langle0|+|0\rangle\langle1|A|0\rangle\langle1|) \\ & +|0\rangle\langle0|A|0\rangle\langle0|-|0\rangle\langle0|A|1\rangle\langle1|-|1\rangle\langle1|A|0\rangle\langle0|+|1\rangle\langle1|A|1\rangle\langle1|] \\ & =\frac{1}{4}[2|0\rangle\langle0|A|0\rangle\langle0|+2|1\rangle\langle1|A|1\rangle\langle1|+2|0\rangle\langle1|A|1\rangle\langle0|+2|1\rangle\langle0|A|0\rangle\langle1|] \\ & = \frac{1}{2}[|0\rangle\langle0|A|0\rangle\langle0|+|1\rangle\langle1|A|1\rangle\langle1|+|0\rangle\langle1|A|1\rangle\langle0|+|1\rangle\langle0|A|0\rangle\langle1|] . \end{split} \end{equation}

At this point the effect of the multiplication of those matrices by matrix $A=\begin{pmatrix}a & b \\ c & d\end{pmatrix}$ has to be analyzed:

  • $|0\rangle\langle0|A|0\rangle\langle0|=\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}\begin{pmatrix}a & b \\ c & d\end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}=\begin{pmatrix}a & 0 \\ 0 & 0\end{pmatrix}$.
  • $|1\rangle\langle1|A|1\rangle\langle1|=\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\begin{pmatrix}a & b \\ c & d\end{pmatrix}\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}=\begin{pmatrix}0 & 0 \\ 0 & d\end{pmatrix}$.
  • $|0\rangle\langle1|A|1\rangle\langle0|=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}\begin{pmatrix}a & b \\ c & d\end{pmatrix}\begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}=\begin{pmatrix}d & 0 \\ 0 & 0\end{pmatrix}$.
  • $|1\rangle\langle0|A|0\rangle\langle1|=\begin{pmatrix}0 & 0 \\ 1 & 0\end{pmatrix}\begin{pmatrix}a & b \\ c & d\end{pmatrix}\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}=\begin{pmatrix}0 & 0 \\ 0 & a\end{pmatrix}$.

And so using such relationships and the fact that $tr(A)=a+d$, we continue the derivation started above from the last step

\begin{equation} \begin{split} \frac{1}{4}\sum_{j=0}^3\sigma_jA\sigma_j &=\frac{1}{2}[|0\rangle\langle0|A|0\rangle\langle0|+|1\rangle\langle1|A|1\rangle\langle1|+|0\rangle\langle1|A|1\rangle\langle0|+|1\rangle\langle0|A|0\rangle\langle1|] \\ & = \frac{1}{2}\left[\begin{pmatrix}a & 0 \\ 0 & 0\end{pmatrix} + \begin{pmatrix}0 & 0 \\ 0 & d\end{pmatrix} + \begin{pmatrix}d & 0 \\ 0 & 0\end{pmatrix} + \begin{pmatrix}0 & 0 \\ 0 & a\end{pmatrix} \right]=\frac{1}{2}\begin{pmatrix}a+d & 0 \\ 0 & a+d\end{pmatrix} \\ & = \frac{a+d}{2}\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}=\frac{tr(A)}{2}I. \end{split} \end{equation}

Note that in the derivation of the equality, the restriction that $A$ must be positive definite has not been used, so the equality holds for all $2\times 2$ matrices.