[Math] Conditional expectation of $\max(X,Y)$ and $\min(X,Y)$ when $X,Y$ are iid and exponentially distributed

probabilityprobability distributionsprobability theory

I am trying to compute the conditional expectation $$E[\max(X,Y) | \min(X,Y)]$$ where $X$ and $Y$ are two iid random variables with $X,Y \sim \exp(1)$.

I already calculated the densities of $\min(X,Y)$ and $\max(X,Y)$, but I failed in calculating the joint density. Is this the right way? How can I compute the joint density then? Or do I have to take another ansatz?

Best Answer

As indicated in the comments, a useful idea when maxima and minima are involved is to consider well adapted events. Here, introducing $Z=\min\{X,Y\}$ and $W=\max\{X,Y\}$, one sees that $[z\leqslant Z,W\leqslant w]$ is $[z\leqslant X\leqslant w]\cap[z\leqslant Y\leqslant w]$ for every nonnegative $z$ and $w$ such that $z\leqslant w$. Here is a computation: since the probability that a standard exponential random variable is $\geqslant x$ is $\mathrm e^{-x}$ for every nonnegative $x$, the events $[z\leqslant X\leqslant w]$ and $[z\leqslant Y\leqslant w]$ both have probability $\mathrm e^{-z}-\mathrm e^{-w}$. Hence, $$ \mathrm P(z\leqslant Z,W\leqslant w)=(\mathrm e^{-z}-\mathrm e^{-w})^2. $$ Differentiating this with respect to $z$ and $w$ yields the density of $(Z,W)$ as $$ 2\mathrm e^{-z-w}\cdot[0\leqslant z\leqslant w]. $$ This formula is all right but, because of the indicator functions in it, I am afraid to make mistakes when using it, so I try to simplify it. Let $V=W-Z$, then $Z\geqslant0$, $V\geqslant 0$, and using $v=w-z$, the density becomes $$ 2\mathrm e^{-z-(v+z)}\cdot[0\leqslant z\leqslant v+z]=2\mathrm e^{-2z}\cdot[z\geqslant 0]\cdot\mathrm e^{-v}\cdot[v\geqslant0]. $$ This proves that $Z$ and $V$ are independent with $Z$ exponential of parameter $2$ and $V$ of parameter $1$ and yields at last the answer to the initial question as $$ \mathrm E(W\mid Z)=\mathrm E(V+Z\mid Z)=\mathrm E(V)+Z=1+Z. $$ The same technique yields that the order statistic $(X^{(k)})_{1\leqslant k\leqslant n}$ of an i.i.d. sample $(X_k)_{1\leqslant k\leqslant n}$ of standard exponential random variables, defined by the conditions that $\{X^{(1)},X^{(2)},\ldots,X^{(n)}\}=\{X_1,X_2,\ldots,X_n\}$ and that $X^{(1)}<X^{(2)}<\cdots <X^{(n)}$, is distributed like $(Z_1,Z_1+Z_2,\ldots,Z_1+Z_2+\cdots+Z_n)$ for independent exponential random variables $(Z_k)_{1\leqslant k\leqslant n}$ such that the distribution of $Z_k$ is exponential with parameter $n-k+1$. A consequence is that, for every $1\leqslant k\leqslant\ell\leqslant n$, $$ \mathrm E(X^{(\ell)}\mid X^{(k)})=X^{(k)}+\sum\limits_{i=n-\ell+1}^{n-k}\frac1i. $$