[Math] Conditional expectation and independence

probability theory

  1. Consider conditional expectation of
    a real-valued r.v. $X$ given a sub
    sigma algebra $\mathcal{B}$ of the
    probability space $(\Omega,
    \mathcal{F}, P)$.

    Will independence between
    $\sigma(X)$, i.e. the sigma algebra
    of the r.v., and the given sub sigma
    algebra $\mathcal{B}$ make $E(X \mid
    \mathcal{B}) \equiv E(X)$ ?

    Is independence between $\sigma(X)$
    and the given sub sigma algebra
    $\mathcal{B}$ is the only way to
    define independence between $X$ and
    $\mathcal{B}$?

    If there are other ways, will they
    make $E(X \mid \mathcal{B}) \equiv
    E(X)$ ?

  2. Consider conditional expectation of
    a real-valued r.v. $X$ given another
    $S$-valued r.v. $Y$ on the same
    probability space $(\Omega,
    \mathcal{F}, P)$.

    Will independence between $X$ and
    $Y$ make $E(X \mid Y) \equiv E(X)$ ?

Why? References are also appreciated!
Thanks and regards!

Best Answer

The answer to the first question in 1. is yes.

As a special case, the answer to 2. is also yes.

Concerning the second question in 1.: It's the only way I can think of. One definition is enough, isn't it? You can of course spell out what indepence actaully means in this case and take what you get as your definition.

Concerning the third question in 1.: They should, otherwise they cannot be equivalent defitions.