[Math] Compass-and-straightedge construction of the square root of a given line

euclidean-geometrygeometric-constructiongeometry

Given

  1. A straight line of arbitrary length
  2. The ability to construct a straight line in any direction from any starting point with the "unit length", or the length whose square root of its magnitude yields its own magnitude.

Is there a way to geometrically construct (using only a compass and straightedge) the a line with the length of the square root of the arbitrary-lengthed line? What is the mathematical basis?

Also, why can't this be done without the unit line length?

Best Answer

If you have a segment $AB$, place the unit length segment on the line where $AB$ lies, starting with $A$ and in the direction opposite to $B$; let $C$ be the other point of the segment. Now draw a semicircle with diameter $BC$ and the perpendicular to $A$; this line crosses the semicircle in a point $D$. Now $AD$ is the square root of $AB$.

$\triangle BCD$ is a right triangle, like $\triangle ACD$ and $\triangle ABD$; all of these are similar, so you find out that $AC/AD = AD/AB$. But $AC=1$, so $AD = \sqrt{AB}$.

See the drawing below:

constructing square root of a line segment