[Math] Colouring a chessboard

coloringcombinatorics

How can I demonstrate that I can colour a $2n\times\binom{2n}{2}$ chessboard, with $n$ different colours, such that there aren't $4$ separate unit squares of the same colour, the centers of which are vertices of a rectangle having sides parallel to the sides of the board?

Best Answer

As usual, $[m]=\{1,2,\dots,m\}$ for each $m\in\Bbb Z^+$, and for any set $S$, $[S]^2$ is the set of unordered pairs of elements of $S$. For a positive integer $m$ and integers $a$ and $b$ define $a\oplus_m b$ to be the unique $k\in[m]$ such that $a+b\equiv k\pmod m$.

Now fix a positive integer $n$, and let $m=2n-1$. For $i,k\in\{0,\dots,m\}$ let $a_{i,k}=i\oplus_m k$, and let

$$b_{i,k}=\begin{cases} 0,&\text{if }i=k\\ a_{i,k},&\text{if }i\ne m\ne k\\ a_{i,i},&\text{if }i<k=m\\ a_{k,k},&\text{if }k<i=m \end{cases}$$

It’s not hard to check that $a_{i,m}=a_{i,1}$ and then that $\{b_{i,0},\dots,b_{i,m}\}=\{0,\dots,m\}$ for $i=0,\dots,m$. Moreover, it’s clear that $b_{i,k}=b_{k,i}$ for $i,k\in\{0,\dots,m\}$. For $c\in[m]$ let

$$P_c=\big\{\{i,k\}\in[m]^2:b_{i,k}=c\big\}\;,$$

and let $\mathscr{P}=\{P_c:c\in[m]\}$. Each $P_c\in\mathscr{P}$ is a partition of $[2n]$ into $n$ unordered pairs, and $\bigcup\mathscr{P}=[2n]^2$. For each $c\in[m]$ let $P_c=\big\{\{r_{c,k},s_{c,k}\}:k\in[n]\big\}$.

Index the columns of the board by $[m]\times[n]$, partition the cells of column $\langle c,q\rangle$ according to $P_c$, and for $k\in[n]$ color the cells in rows $r_{c,k}$ and $s_{c,k}$ with color $k\oplus_nq$.

Suppose that $r,s\in[n]$, $\langle c,q\rangle,\langle d,p\rangle\in[m]\times[n]$, $r\ne s$, and the cells at the intersections of these rows $r$ and $s$ with columns $\langle c,q\rangle$ and $\langle d,p\rangle$ are all the same color. Then $\{r,s\}\in P_c\cap P_d$, so $c=d$, $\{r,s\}=\{r_{c,k},s_{c,k}\}$ for some $k\in[n]$, $k\oplus_nq=k\oplus_np$, and $q=p$, so that $\langle c,q\rangle=\langle d,p\rangle$. Thus, no rectangle with sides parallel to the sides of the board has all four corners the same color.

Related Question