[Math] closure = union of the set and the set of limit points

general-topologymetric-spaces

Let $S \subseteq \mathbb{R^n}$ and denote the set of limit points of
$S$ as $S'$.

Show that $S \cup S' = \bar{S}$ where $\bar{S}$ is the closure.

(i) I want to show that $\bar{S} \subseteq S \cup S'$ .

Let $x \in \bar{S}$ then either $x \in S$ or $x \in \bar{S}\backslash S $.

If $x \in S$ then $x \in S \cup S'$

If $x \in \bar{S}\backslash S $ …?

(ii) I want to show that $S \cup S' \subseteq \bar{S}$.

Let $x \in S \cup S'$. Then, $x \in S$ or $x \in S'$.

If $x\in S$ then $x \in \bar{S}$.

If $x \in \bar{S}$ … ?

Thank you

Best Answer

Looking at (i) you're almost done. If $x \in \overline{S} \backslash S$ then $x \notin S$ and since $x \in \overline{S}$ then all neighborhoods $U$ of $x$ intersect $S$. But since $x$ is not in $S$ then $U$ must intersect $S$ at some point other point that is not $x$. Thus $x \in S'$. Therefore you can conclude that $\overline{S} \underline{\subset} S \cup S'$.

For (ii) note that if $x \in S \cup S'$ then all neighborhoods $U$ of $x$ intersect $S$ at some point, doesn't matter where. Thus $x \in \overline{S}$. Therefore $S \cup S' \underline{\subset} \overline{S}$.

The final conclusion being that $S \cup S' = \overline{S}$

(This is a general result in topology that you can reformulate to real euclidean space if you wish)