[Math] Closed-forms for several tough integrals

calculusclosed-formdefinite integralsimproper-integralsintegration

These integrals came up in the process of finding solution to Vladimir Reshetnikov's problem. I wonder if there are closed-forms for the following integrals:
\begin{array}{1,1}
&[\text{1}] &\quad\int_0^1\frac{\operatorname{Li}_3(ax)}{1+2x}\ dx\\[12pt]
&[\text{2}] &\quad\int_0^1\frac{\operatorname{Li}_2(ax)\ln x}{1+2x}\ dx\\[12pt]
&[\text{3}] &\quad\int_0^1\frac{\ln(1-ax)\ln^2 x}{1+2x}\ dx
\end{array}
I have tried many substitutions, integration by parts, or differentiation under integral sign method, but without success so far. I do not need a complete or rigorous answer and your answer can be only Mathematica's or Maple's output since I don't have those software packages in my computer or links of related papers. I'd be grateful for any help you are able to provide.

Best Answer

Here are values of the integral $[3]$ for some specific values of the parameter $a$: $$\int_0^1\frac{\ln(1-x)\ln^2x}{1+2x}dx=2\operatorname{Li}_4\left(\frac12\right)-\operatorname{Li}_4\left(\frac13\right)-\operatorname{Li}_4\left(\frac23\right)-\frac14\operatorname{Li}_4\left(\frac14\right)\\-\frac{\ln^42}{12}-\frac{\ln^43}{12}+\frac16\ln2\cdot\ln^33+\frac{\pi^2}6\left(\ln2\cdot\ln3-\ln^22-\operatorname{Li}_2\left(\frac13\right)\right).\tag1$$

$$\int_0^1\frac{\ln(1+x)\ln^2x}{1+2x}dx=3\operatorname{Li}_4\left(\frac12\right)-\frac34\operatorname{Li}_4\left(\frac14\right)\\+\left(7\zeta(3)-\operatorname{Li}_3\left(\frac14\right)\right)\frac{\ln2}4-\frac{3\pi^4}{160}-\frac{\ln^42}{24}-\frac{\pi^2}6\ln^22.\tag2$$

$$\int_0^1\frac{\ln(1+2x)\ln^2x}{1+2x}dx=\operatorname{Li}_4\left(\frac12\right)+\operatorname{Li}_4\left(\frac13\right)+\operatorname{Li}_4\left(\frac23\right)-\frac18\operatorname{Li}_4\left(\frac14\right)\\+\left(\operatorname{Li}_3\left(\frac13\right)+\operatorname{Li}_3\left(\frac23\right)\right)\ln3-\frac{11\pi^4}{360}-\frac{\ln^42}{24}-\frac{\ln^43}4\\+\frac{\pi^2}{12}\left(\ln^23-\ln^22\right)+\frac13\ln2\cdot\ln^33.\tag3$$

Related Question