[Math] closed-form solution for $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{nm(3n+m)}$

closed-formdefinite integralsintegrationsummation

I am seeking a closed-form solution for this double sum:

\begin{eqnarray*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{nm(\color{blue}{3}n+m)}= ?.
\end{eqnarray*}

I will turn it into $3$ tough integrals in a moment. But first I will state some similar results:

\begin{eqnarray*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{nm(n+m)} &=& 2 \zeta(3) \\
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{nm(\color{blue}{2}n+m)} &=& \frac{11}{8} \zeta(3) \\
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{nm(\color{blue}{4}n+m)} &=& \frac{67}{32} \zeta(3) -\frac{G \pi}{2}. \\
\end{eqnarray*}

where $G$ is the Catalan constant. The last result took some effort …

Now I know most of you folks prefer integrals to sums, so lets turn this into an integral. Using

\begin{eqnarray*}
\frac{1}{n} &=& \int_0^1 x^{n-1} dx\\
\frac{1}{m} &=& \int_0^1 y^{m-1} dy\\
\frac{1}{3n+m} &=& \int_0^1 z^{3n+m-1} dz \\
\end{eqnarray*}

and summing the geometric series, we have the following triple integral
\begin{eqnarray*}
\int_0^1 \int_0^1 \int_0^1 \frac{z^3 dx dy dz}{(1-xz^3)(1-yz)}.
\end{eqnarray*}

Now doing the $x$ and $y$ integrations we have
\begin{eqnarray*}
I=\int_0^1 \frac{\ln(1-z) \ln(1-z^3)}{z} dz.
\end{eqnarray*}

Factorize the argument of the second logarithm …

\begin{eqnarray*}
I= \underbrace{\int_0^1 \frac{\ln(1-z) \ln(1-z)}{z} dz}_{=2\zeta(3)} + \int_0^1 \frac{\ln(1-z) \ln(1+z+z^2)}{z} dz.
\end{eqnarray*}

So if you prefer my question is … find a closed form for:

\begin{eqnarray*}
I_1 = – \int_0^1 \frac{\ln(1-z) \ln(1+z+z^2)}{z} dz.
\end{eqnarray*}

Integrating by parts gives:

\begin{eqnarray*}
I_1 = – \int_0^1 \frac{\ln(z) \ln(1+z+z^2)}{1-z} dz + \int_0^1 \frac{(1+2z)\ln(z) \ln(1-z)}{1+z+z^2} dz.
\end{eqnarray*}

and let us call these integrals $I_2$ and $I_3$ respectively.

All $3$ of these integrals are not easy for me to evaluate and any help with their resolution will be gratefully received.

Best Answer

A slightly different approach where I will make use of a particular Euler sum.

Let $$I = \int_0^1 \frac{\ln (1 - x) \ln (1 - x^3)}{x} \, dx.$$ Expanding the $\ln (1 - x^3)$ term gives \begin{align} I &= - \sum_{n = 1}^\infty \frac{1}{n} \int_0^1 x^{3n - 1} \ln (1 - x) \, dx\tag1 \end{align} Making use of the result (for a proof of this, see here) $$\int_0^1 x^{n - 1} \ln (1 - x) \, dx = -\frac{H_n}{n}.$$ Re-indexing, namely $n \mapsto 3n$ gives $$\int_0^1 x^{3n - 1} \ln (1 - x) \, dx = -\frac{H_{3n}}{3n}.$$ Substitution of this result into (1) reduces our integral $I$ to the following Euler sum $$I = \frac{1}{3} \sum_{n = 1}^\infty \frac{H_{3n}}{n^2} = 3 \sum_{n = 1}^\infty \frac{H_{3n}}{(3n)^2}.$$

For the Euler sum, since the series converges absolutely, terms in the sum may be rearranged. Doing so we have \begin{align} \sum_{n =1}^\infty \frac{H_{3n}}{(3n)^2} &= \frac{H_3}{3^2} + \frac{H_6}{6^2} + \frac{H_9}{9^2} + \cdots\\ &= \frac{2}{3} \left [\frac{3}{2} \frac{H_3}{3^2} + \frac{3}{2} \frac{H_6}{6^2} + \frac{3}{2} \frac{H_9}{9^2} + \cdots \right ]\\ &= \frac{2}{3} \left [\left (\frac{H_3}{3^2} + \frac{H_6}{6^2} + \frac{H_9}{9^2} + \cdots \right ) + \frac{1}{2} \left (\frac{H_3}{3^2} + \frac{H_6}{6^2} + \frac{H_9}{9^2} + \cdots \right ) \right ]\\ &= \frac{2}{3} \left [\left (-\frac{1}{2} \frac{H_1}{1^2} - \frac{1}{2} \frac{H_2}{2^2} + \frac{H_3}{3^2} - \frac{1}{2} \frac{H_4}{4^2} - \frac{1}{2} \frac{H_5}{5^2} + \frac{H_6}{6^2} - \cdots \right )\right.\\ & \qquad + \left. \frac{1}{2} \left (\frac{H_1}{1^2} + \frac{H_2}{2^2} + \frac{H_3}{3^2} + \frac{H_4}{4^2} + \cdots \right ) \right ]\\ &= \frac{2}{3} \sum_{n = 1}^\infty \frac{H_n}{n^2} \cos \left (\frac{2 \pi n}{3} \right ) + \frac{1}{3} \sum_{n = 1}^\infty \frac{H_n}{n^2} \tag2\\ &= \frac{2}{3} \zeta (3) + \frac{2}{3} \operatorname{Re} \sum_{n = 1}^\infty \frac{H_n}{n^2} \left (e^{\frac{2 \pi i}{3}} \right )^n \end{align} Note in (2) the well-known result of $\sum_{n = 1}^\infty \frac{H_n}{n^2} = 2 \zeta (3)$ has been used.

The sum can now be found by making use of the following generating function (for a simple proof of this result, see here) $$\sum_{n=1}^\infty\frac{H_n}{n^2}x^n=\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln x\ln^2(1-x)+\zeta(3).$$ Setting $x = e^{\frac{2 \pi i}{3}}$ gives \begin{align} \sum_{n = 1}^\infty \frac{H_{3n}}{(3n)^2} &= \frac{2}{3} \zeta (3) + \frac{2}{3} \operatorname{Re} \left [\operatorname{Li}_3 (e^{\frac{2 \pi i}{3}}) - \operatorname{Li}_3 (1 - e^{\frac{2 \pi i}{3}}) + \ln (1 - e^{\frac{2 \pi i}{3}}) \operatorname{Li}_2 (1 - e^{\frac{2 \pi i}{3}}) \right.\\ & \qquad \left. + \frac{1}{2} \ln (e^{\frac{2 \pi i}{3}}) \ln^2 (1 - e^{\frac{2 \pi i}{3}}) + \zeta (3) \right ]\\ &= \frac{5}{3} \zeta (3) + \frac{2}{3} \operatorname{Re} \left [\operatorname{Li}_3 (e^{\frac{2 \pi i}{3}}) - \operatorname{Li}_3 (1 - e^{\frac{2 \pi i}{3}}) + \ln (1 - e^{\frac{2 \pi i}{3}}) \operatorname{Li}_2 (1 - e^{\frac{2 \pi i}{3}}) \right.\\ & \qquad \left. + \frac{\pi i}{3} \ln^2 (1 - e^{\frac{2 \pi i}{3}}) \right ]\tag3 \end{align} Now, since (this part is tedious, but readily doable) \begin{align} \operatorname{Re} \operatorname{Li}_3 (e^{\frac{2 \pi i}{3}}) &= -\frac{4}{9} \zeta (3)\\ \operatorname{Re} \operatorname{Li}_3 (1 - e^{\frac{2 \pi i}{3}}) &= \frac{\pi^2}{18} \ln 3 + \frac{13}{18} \zeta (3)\\ \operatorname{Re} \left [i \ln^2 (1 - e^{\frac{2 \pi i}{3}}) \right ] &= \frac{\pi}{6} \ln 3\\ \operatorname{Re} \left [\ln (1 - e^{\frac{2 \pi i}{3}}) \operatorname{Li}_2 (1 - e^{\frac{2 \pi i}{3}}) \right ] &= \frac{\pi^3}{27 \sqrt{3}} - \frac{\pi}{18 \sqrt{3}} \psi^{(1)} \left (\frac{1}{3} \right ) \end{align} The Euler sum in (3) thus becomes $$\sum_{n = 1}^\infty \frac{H_{3n}}{(3n)^2} = \frac{5}{9} \zeta (3) + \frac{2 \pi^3}{81 \sqrt{3}} - \frac{\pi}{27 \sqrt{3}} \psi^{(1)} \left (\frac{1}{3} \right ),$$ so that we finally arrive at the following value for the integral (and hence your double sum) of

$$\int_0^1 \frac{\ln (1 - x) \ln (1 - x^3)}{x} \, dx = \frac{5}{3} \zeta (3) + \frac{2 \pi^3}{27 \sqrt{3}} - \frac{\pi}{9 \sqrt{3}} \psi^{(1)} \left (\frac{1}{3} \right )$$

Related Question