Calculus – Closed Form for ?_0^1 (ln²x)/(?(1-x+x²)) dx

calculusclosed-formdefinite integralshypergeometric functionintegration

I want to find a closed form for this integral:
$$I=\int_0^1\frac{\ln^2x}{\sqrt{x^2-x+1}}dx\tag1$$
Mathematica and Maple cannot evaluate it directly, and I was not able to find it in tables. A numeric approximation for it is
$$I\approx2.100290124838430655413586565140170651784798511276914224…\tag2$$
(click here to see more digits).

Mathematica is able to find a closed form for a parameterized integral in terms of the Appell hypergeometric function:
$$I(a)=\int_0^1\frac{x^a}{\sqrt{x^2-x+1}}dx\\=\frac1{a+1}F_1\left(a+1;\frac{1}{2},\frac{1}{2};a+2;(-1)^{\small1/3},-(-1)^{\small2/3}\right).\tag3$$
I suspect this expression could be rewritten in a simpler form, but I could not find it yet.

It's easy to see that $I=I''(0),$ but it's unclear how to find a closed-form derivative of the Appell hypergeometric function with respect to its parameters.

Could you help me to find a closed form for $I$?


Update: Numerical calculations suggest that for all complex $z$ with $\Re(z)>0$ the following functional equation holds:
$$z\,I(z-1)-\!\left(z+\tfrac12\right)\,I(z)+(z+1)\,I(z+1)=1.\tag4$$

Best Answer

Edited for a more concise derivation:

Define $\mathcal{I}$ to be the value of the definite integral,

$$\mathcal{I}:=\int_{0}^{1}\frac{\ln^{2}{\left(x\right)}}{\sqrt{x^{2}-x+1}}\,\mathrm{d}x.\tag{1}$$

The definite integral $\mathcal{I}$ is found to have as an approximate numerical value

$$\mathcal{I}\approx2.10029.\tag{2}$$


We begin by transforming the integral via an Euler substitution of the first kind:

$$\sqrt{x^{2}-x+1}=x+t\implies x=\frac{1-t^{2}}{1+2t},\tag{3}$$

$$\implies\mathrm{d}x=\frac{\left(-2\right)\left(1+t+t^{2}\right)}{\left(1+2t\right)^{2}}\,\mathrm{d}t,$$

$$\implies\sqrt{x^{2}-x+1}=\frac{1-t^{2}}{1+2t}+t=\frac{1+t+t^{2}}{1+2t}.$$

Under the transformation $(3)$, the integral $\mathcal{I}$ becomes

$$\begin{align} \mathcal{I} &=\int_{0}^{1}\frac{\ln^{2}{\left(x\right)}}{\sqrt{x^{2}-x+1}}\,\mathrm{d}x\\ &=2\int_{0}^{1}\frac{\ln^{2}{\left(\frac{1-t^{2}}{1+2t}\right)}}{1+2t}\,\mathrm{d}t;~~~\small{\left[\sqrt{x^{2}-x+1}=x+t\right]}\\ &=2\int_{0}^{1}\frac{\left[\ln{\left(1-t\right)}+\ln{\left(1+t\right)}-\ln{\left(1+2t\right)}\right]^{2}}{1+2t}\,\mathrm{d}t.\tag{4}\\ \end{align}$$

Next, using the algebraic identity

$$\left(a+b-c\right)^{2}=a^{2}+2b^{2}-\left(a-b\right)^{2}+\left(a-c\right)^{2}-2bc,$$

with $a=\ln{\left(1-t\right)}\land b=\ln{\left(1+t\right)}\land c=\ln{\left(1+2t\right)}$, we may expand the integral $\mathcal{I}$ as a sum of five simpler logarithmic integrals:

$$\begin{align} \mathcal{I} &=2\int_{0}^{1}\frac{\left[\ln{\left(1-t\right)}+\ln{\left(1+t\right)}-\ln{\left(1+2t\right)}\right]^{2}}{1+2t}\,\mathrm{d}t\\ &=2\int_{0}^{1}\frac{\ln^{2}{\left(1-t\right)}}{1+2t}\,\mathrm{d}t+4\int_{0}^{1}\frac{\ln^{2}{\left(1+t\right)}}{1+2t}\,\mathrm{d}t\\ &~~~~~-2\int_{0}^{1}\frac{\left[\ln{\left(1-t\right)}-\ln{\left(1+t\right)}\right]^{2}}{1+2t}\,\mathrm{d}t\\ &~~~~~+2\int_{0}^{1}\frac{\left[\ln{\left(1-t\right)}-\ln{\left(1+2t\right)}\right]^{2}}{1+2t}\,\mathrm{d}t\\ &~~~~~-4\int_{0}^{1}\frac{\ln{\left(1+t\right)}\ln{\left(1+2t\right)}}{1+2t}\,\mathrm{d}t\\ &=2\int_{0}^{1}\frac{\ln^{2}{\left(1-t\right)}}{1+2t}\,\mathrm{d}t+4\int_{0}^{1}\frac{\ln^{2}{\left(1+t\right)}}{1+2t}\,\mathrm{d}t\\ &~~~~~-2\int_{0}^{1}\frac{\ln^{2}{\left(\frac{1-t}{1+t}\right)}}{1+2t}\,\mathrm{d}t+2\int_{0}^{1}\frac{\ln^{2}{\left(\frac{1-t}{1+2t}\right)}}{1+2t}\,\mathrm{d}t\\ &~~~~~-4\int_{0}^{1}\frac{\ln{\left(1+t\right)}\ln{\left(1+2t\right)}}{1+2t}\,\mathrm{d}t.\tag{5}\\ \end{align}$$

Now, we'll find it convenient to introduce the following two auxiliary functions:

$$J{\left(z\right)}:=\int_{0}^{1}\frac{\ln^{2}{\left(y\right)}}{1+zy}\,\mathrm{d}y;~~~\small{z\ge-1},\tag{6a}$$

and

$$H{\left(a,c\right)}:=\int_{0}^{1}\frac{\ln^{2}{\left(1+ay\right)}}{1+cy}\,\mathrm{d}y;~~~\small{a\ge-1\land c>-1}.\tag{6b}$$

As we shall see, the integral $\mathcal{I}$ can be expressed entirely in terms of the auxiliary functions $J$ and $H$, and hence, entirely in terms of elementary functions and the standard polylogarithms:

$$\begin{align} \mathcal{I} &=2\int_{0}^{1}\frac{\ln^{2}{\left(1-t\right)}}{1+2t}\,\mathrm{d}t+4\int_{0}^{1}\frac{\ln^{2}{\left(1+t\right)}}{1+2t}\,\mathrm{d}t\\ &~~~~~-2\int_{0}^{1}\frac{\ln^{2}{\left(\frac{1-t}{1+t}\right)}}{1+2t}\,\mathrm{d}t+2\int_{0}^{1}\frac{\ln^{2}{\left(\frac{1-t}{1+2t}\right)}}{1+2t}\,\mathrm{d}t\\ &~~~~~-\int_{0}^{1}\frac{4\ln{\left(1+t\right)}\ln{\left(1+2t\right)}}{1+2t}\,\mathrm{d}t\\ &=2\int_{0}^{1}\frac{\ln^{2}{\left(u\right)}}{3-2u}\,\mathrm{d}u;~~~\small{\left[1-t=u\right]}\\ &~~~~~+4\,H{\left(1,2\right)}\\ &~~~~~-\int_{0}^{1}\frac{4\ln^{2}{\left(v\right)}}{\left(3-v\right)\left(1+v\right)}\,\mathrm{d}v;~~~\small{\left[\frac{1-t}{1+t}=v\right]}\\ &~~~~~+2\int_{0}^{1}\frac{\ln^{2}{\left(w\right)}}{1+2w}\,\mathrm{d}w;~~~\small{\left[\frac{1-t}{1+2t}=w\right]}\\ &~~~~~\small{-\left(\left[\ln{\left(1+t\right)}\ln^{2}{\left(1+2t\right)}\right]_{0}^{1}-\int_{0}^{1}\frac{\ln^{2}{\left(1+2t\right)}}{1+t}\,\mathrm{d}t\right)};~~~\small{I.B.P.s}\\ &=\frac23\int_{0}^{1}\frac{\ln^{2}{\left(u\right)}}{1-\frac23u}\,\mathrm{d}u+4\,H{\left(1,2\right)}\\ &~~~~~-\frac13\int_{0}^{1}\frac{\ln^{2}{\left(v\right)}}{1-\frac13v}\,\mathrm{d}v-\int_{0}^{1}\frac{\ln^{2}{\left(v\right)}}{1+v}\,\mathrm{d}v+2\,J{\left(2\right)}\\ &~~~~~-\ln{(2)}\ln^{2}{(3)}+H{\left(2,1\right)}\\ &=\frac23\,J{\left(-\frac23\right)}+4\,H{\left(1,2\right)}-\frac13\,J{\left(-\frac13\right)}\\ &~~~~~-J{\left(1\right)}+2\,J{\left(2\right)}-\ln{(2)}\ln^{2}{(3)}+H{\left(2,1\right)}.\tag{7}\\ \end{align}$$

The function $H$ can be expressed in terms of $J$, dilogarithms, and elementary functions. Define $\gamma:=\frac{a-c}{c}$. For $0<a\land0<c$, we have $-1<\gamma$ and

$$\begin{align} H{\left(a,c\right)} &=\int_{0}^{1}\frac{\ln^{2}{\left(1+ay\right)}}{1+cy}\,\mathrm{d}y\\ &=\int_{\frac{1}{1+a}}^{1}\frac{\ln^{2}{\left(x\right)}}{x\left[c+\left(a-c\right)x\right]}\,\mathrm{d}x;~~~\small{\left[\frac{1}{1+ay}=x\right]}\\ &=\frac{1}{c}\int_{\frac{1}{1+a}}^{1}\frac{\ln^{2}{\left(x\right)}}{x}\,\mathrm{d}x-\frac{a-c}{c}\int_{\frac{1}{1+a}}^{1}\frac{\ln^{2}{\left(x\right)}}{c+\left(a-c\right)x}\,\mathrm{d}x\\ &=\frac{1}{3c}\ln^{3}{\left(1+a\right)}-\frac{a-c}{c^{2}}\int_{\frac{1}{1+a}}^{1}\frac{\ln^{2}{\left(x\right)}}{1+\left(\frac{a-c}{c}\right)x}\,\mathrm{d}x\\ &=\frac{1}{3c}\ln^{3}{\left(1+a\right)}-\frac{\gamma}{c}\int_{\frac{1}{1+a}}^{1}\frac{\ln^{2}{\left(x\right)}}{1+\gamma x}\,\mathrm{d}x\\ &=\frac{1}{3c}\ln^{3}{\left(1+a\right)}-\frac{\gamma}{c}\int_{0}^{1}\frac{\ln^{2}{\left(x\right)}}{1+\gamma x}\,\mathrm{d}x\\ &~~~~~+\frac{\gamma}{c}\int_{0}^{\frac{1}{1+a}}\frac{\ln^{2}{\left(x\right)}}{1+\gamma x}\,\mathrm{d}x\\ &=\frac{1}{3c}\ln^{3}{\left(1+a\right)}-\frac{\gamma}{c}J{\left(\gamma\right)}\\ &~~~~~+\frac{\gamma}{c\left(1+a\right)}\int_{0}^{1}\frac{\ln^{2}{\left(\frac{w}{1+a}\right)}}{1+\left(\frac{\gamma}{1+a}\right)w}\,\mathrm{d}w;~~~\small{\left[\left(1+a\right)x=w\right]}\\ &=\frac{1}{3c}\ln^{3}{\left(1+a\right)}-\left(\frac{a-c}{c^{2}}\right)J{\left(\frac{a-c}{c}\right)}\\ &~~~~~\small{+\frac{\gamma}{c\left(1+a\right)}\int_{0}^{1}\frac{\ln^{2}{\left(w\right)}-2\ln{\left(w\right)}\ln{\left(1+a\right)}+\ln^{2}{\left(1+a\right)}}{1+\left(\frac{\gamma}{1+a}\right)w}\,\mathrm{d}w}\\ &=\frac{1}{3c}\ln^{3}{\left(1+a\right)}-\left(\frac{a-c}{c^{2}}\right)J{\left(\frac{a-c}{c}\right)}\\ &~~~~~+\frac{\gamma}{c\left(1+a\right)}\int_{0}^{1}\frac{\ln^{2}{\left(w\right)}}{1+\left(\frac{\gamma}{1+a}\right)w}\,\mathrm{d}w\\ &~~~~~-\frac{2}{c}\ln{\left(1+a\right)}\int_{0}^{1}\frac{\left(\frac{\gamma}{1+a}\right)\ln{\left(w\right)}}{1+\left(\frac{\gamma}{1+a}\right)w}\,\mathrm{d}w\\ &~~~~~+\frac{1}{c}\ln^{2}{\left(1+a\right)}\int_{0}^{1}\frac{\left(\frac{\gamma}{1+a}\right)}{1+\left(\frac{\gamma}{1+a}\right)w}\,\mathrm{d}w\\ &=\frac{1}{3c}\ln^{3}{\left(1+a\right)}-\left(\frac{a-c}{c^{2}}\right)J{\left(\frac{a-c}{c}\right)}\\ &~~~~~+\frac{\gamma}{c\left(1+a\right)}\,J{\left(\frac{\gamma}{1+a}\right)}\\ &~~~~~+\frac{2}{c}\ln{\left(1+a\right)}\int_{0}^{1}\frac{\ln{\left(1+\left(\frac{\gamma}{1+a}\right)w\right)}}{w}\,\mathrm{d}w\\ &~~~~~+\frac{1}{c}\ln^{2}{\left(1+a\right)}\ln{\left(1+\left(\frac{\gamma}{1+a}\right)\right)}\\ &=\frac{1}{3c}\ln^{3}{\left(1+a\right)}-\left(\frac{a-c}{c^{2}}\right)J{\left(\frac{a-c}{c}\right)}\\ &~~~~~+\frac{a-c}{c^{2}\left(1+a\right)}\,J{\left(\frac{a-c}{c\left(1+a\right)}\right)}\\ &~~~~~-\frac{2}{c}\ln{\left(1+a\right)}\operatorname{Li}_{2}{\left(-\left(\frac{\gamma}{1+a}\right)\right)}\\ &~~~~~+\frac{1}{c}\ln^{2}{\left(1+a\right)}\ln{\left(\frac{a\left(1+c\right)}{\left(1+a\right)c}\right)}\\ &=\frac{a-c}{c^{2}\left(1+a\right)}\,J{\left(\frac{a-c}{c\left(1+a\right)}\right)}-\frac{a-c}{c^{2}}\,J{\left(\frac{a-c}{c}\right)}\\ &~~~~~-\frac{2}{c}\ln{\left(1+a\right)}\operatorname{Li}_{2}{\left(\frac{c-a}{c\left(1+a\right)}\right)}\\ &~~~~~+\frac{1}{3c}\ln^{3}{\left(1+a\right)}+\frac{1}{c}\ln^{2}{\left(1+a\right)}\ln{\left(\frac{a\left(1+c\right)}{\left(1+a\right)c}\right)}.\tag{8}\\ \end{align}$$

The function $J$ reduces to the trilogarithm. For $-1\le z\land z\neq0$,

$$\begin{align} J{\left(z\right)} &=\int_{0}^{1}\frac{\ln^{2}{\left(y\right)}}{1+zy}\,\mathrm{d}y\\ &=-\frac{2}{z}\operatorname{Li}_{3}{\left(-z\right)}.\tag{9}\\ \end{align}$$

Thus, continuing from where we left off at the last line of $(7)$,

$$\begin{align} \mathcal{I} &=\frac23\,J{\left(-\frac23\right)}-\frac13\,J{\left(-\frac13\right)}-J{\left(1\right)}+2\,J{\left(2\right)}\\ &~~~~~+4\,H{\left(1,2\right)}+H{\left(2,1\right)}-\ln{(2)}\ln^{2}{(3)}\\ &=2\operatorname{Li}_{3}{\left(\frac23\right)}-2\operatorname{Li}_{3}{\left(\frac13\right)}+2\operatorname{Li}_{3}{\left(-1\right)}-2\operatorname{Li}_{3}{\left(-2\right)}\\ &~~~~~\small{+4\left[-\operatorname{Li}_{3}{\left(\frac14\right)}+\operatorname{Li}_{3}{\left(\frac12\right)}-\ln{(2)}\operatorname{Li}_{2}{\left(\frac14\right)}-\frac56\ln^{3}{(2)}+\frac12\ln^{2}{(2)}\ln{(3)}\right]}\\ &~~~~~\small{+\left[2\operatorname{Li}_{3}{\left(-1\right)}-2\operatorname{Li}_{3}{\left(-\frac13\right)}-\ln{(9)}\operatorname{Li}_{2}{\left(-\frac13\right)}-\frac23\ln^{3}{(3)}+\ln{(4)}\ln^{2}{(3)}\right]}\\ &~~~~~-\ln{(2)}\ln^{2}{(3)}\\ &=2\operatorname{Li}_{3}{\left(\frac23\right)}-2\operatorname{Li}_{3}{\left(\frac13\right)}-2\operatorname{Li}_{3}{\left(-\frac13\right)}-2\operatorname{Li}_{3}{\left(-2\right)}\\ &~~~~~-4\operatorname{Li}_{3}{\left(\frac14\right)}+4\operatorname{Li}_{3}{\left(\frac12\right)}+4\operatorname{Li}_{3}{\left(-1\right)}\\ &~~~~~-4\ln{(2)}\operatorname{Li}_{2}{\left(\frac14\right)}-2\ln{(3)}\operatorname{Li}_{2}{\left(-\frac13\right)}\\ &~~~~~-\frac{10}{3}\ln^{3}{(2)}+2\ln^{2}{(2)}\ln{(3)}+\ln{(2)}\ln^{2}{(3)}-\frac23\ln^{3}{(3)}.\blacksquare\\ \end{align}$$


For $z\notin[1,\infty)$,

$$\small{\operatorname{Li}_{3}{\left(z\right)}=-\operatorname{Li}_{3}{\left(\frac{z}{z-1}\right)}-\operatorname{Li}_{3}{\left(1-z\right)}+\frac{\ln^3{\left(1-z\right)}}{6}-\frac{\ln{\left(z\right)}\ln^2{\left(1-z\right)}}{2}+\frac{\pi^2}{6}\ln{\left(1-z\right)}+\zeta{(3)}}.$$

For $0<z<1$,

$$\small{\operatorname{Li}_{3}{\left(z\right)}+\operatorname{Li}_{3}{\left(1-z\right)}+\operatorname{Li}_{3}{\left(\frac{z}{z-1}\right)}=\frac{\ln^3{\left(1-z\right)}}{6}-\frac{\ln{\left(z\right)}\ln^2{\left(1-z\right)}}{2}+\frac{\pi^2}{6}\ln{\left(1-z\right)}+\zeta{(3)}}.$$

Setting $z=\frac13$,

$$\small{\operatorname{Li}_{3}{\left(\frac13\right)}+\operatorname{Li}_{3}{\left(\frac23\right)}+\operatorname{Li}_{3}{\left(-\frac12\right)}=\frac{\ln^3{\left(\frac23\right)}}{6}-\frac{\ln{\left(\frac13\right)}\ln^2{\left(\frac23\right)}}{2}+\zeta{(2)}\ln{\left(\frac23\right)}+\zeta{(3)}}.$$

$$\small{\operatorname{Li}_{3}{\left(\frac13\right)}+\operatorname{Li}_{3}{\left(\frac23\right)}+\operatorname{Li}_{3}{\left(-\frac12\right)}=\frac{\ln^{3}{(2)}-3\ln{(2)}\ln^{2}{(3)}+2\ln^{3}{(3)}}{6}+\zeta{(2)}\ln{\left(\frac23\right)}+\zeta{(3)}}$$

$$\small{\operatorname{Li}_{3}{\left(\frac13\right)}+\operatorname{Li}_{3}{\left(\frac23\right)}+\operatorname{Li}_{3}{\left(-\frac12\right)}=\frac{\ln^{2}{\left(\frac32\right)}\ln{\left(18\right)}}{6}-\zeta{(2)}\ln{\left(\frac32\right)}+\zeta{(3)}}$$