[Math] Closed form for $\int_0^\infty\frac{\sin x\,\cdot\,\operatorname{Ci}x-\cos x\,\cdot\,\operatorname{Si}x}{\sqrt{16\,x^2+1}}dx$

calculusclosed-formdefinite integralsimproper-integralsintegration

Is it possible to find a closed form for this integral?
$$\mathcal{S}=\int_0^\infty\frac{\sin x\cdot\operatorname{Ci}x-\cos x\cdot\operatorname{Si}x}{\sqrt{16\,x^2+1}}dx,$$
where $\operatorname{Ci}x$ is the cosine integral and $\operatorname{Si}x$ is the sine integral:
$$\operatorname{Ci}x=-\int_x^\infty\frac{\cos t}t dt,\ \operatorname{Si}x=\int_0^x\frac{\sin t}t dt.$$
Numerical integration gives
$$\mathcal{S}\approx0.133456902778362645676629…$$

Best Answer

Not sure if you consider this a closed form, but the integral $\mathcal{S}$ can be expressed in terms of the generalized Meijer $G$-function (see formula $(3)$ here for the definition) and the modified Bessel function of the $2^{nd}$ kind $K_\nu(x)$: $$\mathcal{S}=\frac{G_{2,4}^{4,2}\left(\frac18,\frac12\middle|\begin{array}{c}\frac12,\frac12\\0,0,\frac12,\frac12\\\end{array}\right)}{16\,\pi}-\frac\pi8K_0\left(\frac14\right).$$