[Math] Closed form for an integral involving the incomplete Gamma function

calculuscomplex-analysisfourier transformgamma functionintegration

Let $\alpha>1$, $K>1$ and $n \in \mathbb{N}^+$. What is a closed form solution to a tough integral? $$I(\alpha,K,n)=-\int_{-\infty }^{\infty } \frac{2 i e^{-i K u} (K u-i) \Bigl[\alpha \, (-i u)^{\alpha } \,\Gamma (-\alpha ,-i u)\Bigr]^n}{u^2} \, du,$$
where $\Gamma(.,.)$ is the incomplete Gamma function:
$\Gamma (a,z)=\int _z^{\infty }d t\, t^{a-1} e^{-t}$.

I tried all manner of substitutions and various combinations of integration by parts.

Best Answer

We may use the following integral representation for the incomplete gamma function (DLMF ref. see identity 8.6.4):

$$\Gamma{\left(\alpha,z\right)}=\frac{z^{\alpha}e^{-z}}{\Gamma{\left(1-\alpha\right)}}\int_{0}^{\infty}\frac{t^{-\alpha}e^{-t}}{z+t}\,\mathrm{d}t;~~~\small{\left|\arg{\left(z\right)}\right|<\pi,~\Re{\left(\alpha\right)}<1}.$$


Given $n\in\mathbb{N}^{+}\land a,b,\epsilon\in\mathbb{R}\land1<a\land1\le b\le n\land0<\epsilon$, define $I_{n}{\left(a,b;\epsilon\right)}$ via the integral

$$I_{n}{\left(a,b;\epsilon\right)}=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{2ie^{-ibx}\left(bx-i\right)\left[a\left(-ix\right)^{a}\,\Gamma{\left(-a,-ix\right)}\right]^{n}}{x^{2}+\epsilon^{2}}.$$

Then,

$$\begin{align} I_{n}{\left(a,b;\epsilon\right)} &=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{2ie^{-ibx}\left(bx-i\right)\left[a\left(-ix\right)^{a}\,\Gamma{\left(-a,-ix\right)}\right]^{n}}{x^{2}+\epsilon^{2}}\\ &=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{2ie^{-ibx}\left(bx-i\right)}{x^{2}+\epsilon^{2}}\left[\frac{e^{ix}}{\Gamma{\left(a\right)}}\int_{0}^{\infty}\frac{t^{a}e^{-t}}{t-ix}\,\mathrm{d}t\right]^{n}\\ &=\frac{1}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{2ie^{-ibx}\left(bx-i\right)}{x^{2}+\epsilon^{2}}e^{inx}\left[\int_{0}^{\infty}\frac{t^{a}e^{-t}}{t-ix}\,\mathrm{d}t\right]^{n}\\ &=\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(bx-i\right)e^{i\left(n-b\right)x}}{x^{2}+\epsilon^{2}}\left[\int_{0}^{\infty}\frac{t^{a}e^{-t}}{t-ix}\,\mathrm{d}t\right]^{n}\\ &=\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(bx-i\right)e^{i\left(n-b\right)x}}{x^{2}+\epsilon^{2}}\prod_{k=1}^{n}\int_{0}^{\infty}\mathrm{d}t_{k}\,\frac{t_{k}^{a}e^{-t_{k}}}{t_{k}-ix}\\ &=\small{\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(bx-i\right)e^{i\left(n-b\right)x}}{x^{2}+\epsilon^{2}}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,e^{-\sum_{k=1}^{n}t_{k}}\prod_{k=1}^{n}\left(\frac{t_{k}^{a}}{t_{k}-ix}\right)}\\ &=\small{\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\left(\prod_{k=1}^{n}t_{k}^{a}\right)e^{-\sum_{k=1}^{n}t_{k}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(bx-i\right)e^{i\left(n-b\right)x}}{\left(x^{2}+\epsilon^{2}\right)\prod_{k=1}^{n}\left(t_{k}-ix\right)}}\\ &=\small{\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\frac{\left(\prod_{k=1}^{n}t_{k}^{a}\right)}{\exp{\left(\sum_{k=1}^{n}t_{k}\right)}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(-bx-i\right)e^{-i\left(n-b\right)x}}{\left(x^{2}+\epsilon^{2}\right)\prod_{k=1}^{n}\left(t_{k}+ix\right)}}\\ &=:\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\frac{\left(\prod_{k=1}^{n}t_{k}^{a}\right)}{\exp{\left(\sum_{k=1}^{n}t_{k}\right)}}\,f_{n}{\left(b;\epsilon\right)},\\ \end{align}$$

where for $n\in\mathbb{N}^{+}\land b,\epsilon\in\mathbb{R}\land1\le b\le n\land0<\epsilon$ we've defined the auxiliary function denoting the innermost integration,

$$f_{n}{\left(b;\epsilon\right)}:=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(-bx-i\right)e^{-i\left(n-b\right)x}}{\left(x^{2}+\epsilon^{2}\right)\prod_{k=1}^{n}\left(t_{k}+ix\right)}.$$

For the integration over $x$, I will appeal to a well-suited proposition from Gradshteyn's Tables. Now, I usually try to make my posts as self-contained as possible by proving any non-trivial lemmas I plan on using, rather than taking the lazy way out and simply citing the result from an outside source. But I can't resist doing so, partly out of laziness, but mostly just to show off how Gradshteyn can on occasion be eerily clairvoyant.

Gradshteyn 3.386: Given the conditions $$-1<\Re{\left(\nu_{0}\right)}\land0<\Re{\left(\beta_{k}\right)}\land\sum_{k=0}^{n}\Re{\left(\nu_{k}\right)}<1\land0<p,$$ we have the following two results: $$\int_{-\infty}^{\infty}\frac{\left(ix\right)^{\nu_{0}}e^{-ipx}\prod_{k=1}^{n}\left(\beta_{k}+ix\right)^{\nu_{k}}}{\beta_{0}-ix}\mathrm{d}x=2\pi e^{-\beta_{0}p}\beta_{0}^{\nu_{0}}\prod_{k=1}^{n}\left(\beta_{0}+\beta_{k}\right)^{\nu_{k}},$$ and $$\int_{-\infty}^{\infty}\frac{\left(ix\right)^{\nu_{0}}e^{-ipx}\prod_{k=1}^{n}\left(\beta_{k}+ix\right)^{\nu_{k}}}{\beta_{0}+ix}\mathrm{d}x=0.$$


The following partial fraction decomposition is easily verified:

$$\frac{-bx-i}{x^{2}+\epsilon^{2}}=\frac{1}{2i\epsilon}\left[\frac{\left(1-b\epsilon\right)}{\epsilon-ix}+\frac{\left(1+b\epsilon\right)}{\epsilon+ix}\right].$$

Then, assuming $0<\Re{\left(t_{k}\right)}\land b<n$,

$$\begin{align} f_{n}{\left(b;\epsilon\right)} &=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(-bx-i\right)e^{-i\left(n-b\right)x}}{\left(x^{2}+\epsilon^{2}\right)\prod_{k=1}^{n}\left(t_{k}+ix\right)}\\ &=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{1}{2i\epsilon}\left[\frac{\left(1-b\epsilon\right)}{\epsilon-ix}+\frac{\left(1+b\epsilon\right)}{\epsilon+ix}\right]\frac{e^{-i\left(n-b\right)x}}{\prod_{k=1}^{n}\left(t_{k}+ix\right)}\\ &=\frac{1-b\epsilon}{2i\epsilon}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{e^{-i\left(n-b\right)x}}{\left(\epsilon-ix\right)\prod_{k=1}^{n}\left(t_{k}+ix\right)}\\ &~~~~~+\frac{1+b\epsilon}{2i\epsilon}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{e^{-i\left(n-b\right)x}}{\left(\epsilon+ix\right)\prod_{k=1}^{n}\left(t_{k}+ix\right)}\\ &=\frac{1-b\epsilon}{2i\epsilon}\cdot\frac{2\pi e^{-\left(n-b\right)\epsilon}}{\prod_{k=1}^{n}\left(\epsilon+t_{k}\right)}.\\ \end{align}$$

Thus,

$$\begin{align} I_{n}{\left(a,b;\epsilon\right)} &=\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\frac{\left(\prod_{k=1}^{n}t_{k}^{a}\right)}{\exp{\left(\sum_{k=1}^{n}t_{k}\right)}}\,f_{n}{\left(b;\epsilon\right)}\\ &=\frac{2\pi\left(1-b\epsilon\right)e^{-\left(n-b\right)\epsilon}}{\left[\Gamma{\left(a\right)}\right]^{n}\epsilon}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\frac{\left(\prod_{k=1}^{n}t_{k}^{a}\right)}{\exp{\left(\sum_{k=1}^{n}t_{k}\right)}}\cdot\frac{1}{\prod_{k=1}^{n}\left(\epsilon+t_{k}\right)}\\ &=\frac{2\pi\left(1-b\epsilon\right)e^{-\left(n-b\right)\epsilon}}{\left[\Gamma{\left(a\right)}\right]^{n}\epsilon}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\prod_{k=1}^{n}\left(\frac{t_{k}^{a}e^{-t_{k}}}{\epsilon+t_{k}}\right)\\ &=\frac{2\pi\left(1-b\epsilon\right)e^{-\left(n-b\right)\epsilon}}{\left[\Gamma{\left(a\right)}\right]^{n}\epsilon}\left[\int_{0}^{\infty}\mathrm{d}t\,\left(\frac{t^{a}e^{-t}}{\epsilon+t}\right)\right]^{n}\\ &=\frac{2\pi\left(1-b\epsilon\right)e^{-\left(n-b\right)\epsilon}}{\left[\Gamma{\left(a\right)}\right]^{n}\epsilon}\left[\epsilon^{a}e^{\epsilon}\,\Gamma{\left(1+a\right)}\,\Gamma{\left(-a,\epsilon\right)}\right]^{n}\\ &=2\pi a^{n}\left(1-b\epsilon\right)\epsilon^{na-1}e^{b\epsilon}\left[\Gamma{\left(-a,\epsilon\right)}\right]^{n}.\\ \end{align}$$