[Math] Can tetration ‘escape’ the complex plane

complex numbershyperoperationtetration

Considering subtraction can break out of the natural numbers and into integers, division can break out of integers and into rational numbers, and exponentiation can break out of rational numbers and into irrational and complex numbers…

Can tetration (or more specifically the inverse of tetration) 'break out' of complex numbers and into some other set? And can this be proven?

If not, are there any other hyperoperations that could do so?

Best Answer

It seems to me that the inverse of the polynomial functions, $$f=\sum_{n=0}^{i}a_n \cdot x^n;\;\;\; i,a_n \in \mathbb{N};\;\;\; f^{^-1}(\mathbb{N}) \in \mathbb{C} $$

are what breaks out of the rationals and into the real and complex numbers, before you ever get to the $\exp(x); \;\ln(x)$ functions. And from there, you quickly get to a generic infinite Taylor series with real valued coefficients, which suffice for Tetration and Slog.

Kneser's tetration solution and its inverse, the Slog are both analytic functions with Taylor series, and with singularities.

In particular, Kneser's Tetration base(a) $\forall a>\exp(1/e)$ is analytic in the upper and lower halves of the complex plane, and at the real axis except for singularities at the integers <=-2. The $\text{Slog}_e$ is analytic at the real axis and has a singularity at each of the complex conjugate fixed points, $L,L_* \approx 0.318131505 \pm 1.33723570i$, as well as at $L,L_*+2n\pi i$ where the cutpoints can be draw from $L \to \Im(\infty) \text{ and } L_* \to -\Im(\infty)$. The slog singularities depend on how the cut points are drawn.

So there is no need to go beyond the $\mathbb{C}$ numbers to define Tet and Slog, though perhaps one can define different algebras that do so. There are also known analytic Pentation functions, and I have even experimented with analytic Hexation and Septation. The iterated functions beyond Tetration are much less well behaved in the complex plane, but there is no need to go beyond $\mathbb{C}$.

Here are some plots of Kneser's slog base(e), the inverse of Tetration, which the Op wrote, thought might not be analytic. $\text{slog}_e(\exp(z))=\text{slog}_e(z)+1$. There is also a Taylor series below.

Here is the slog_e at the real axis from -3 to +4. slog at the real axis

Here is the slog_e at the imaginary axis from $\Re(L)\pm 6i$ showing two periods and showing the singularities at $L,L_*+2n\pi i$. I limited the graph to +/-3.5 in magnitude. slog_e imaginary axis

Here is the complex plane color graph for slog(z)+2, showing the $2\pi i$ periodicity to the left of the the $\Re(L)$ singulariy cutpoint line. The plot goes from $-5 < \Re(z) < +6$ and $-4 < \Im(z) <+7$. The slog_e is analytic on both the left and right side of these two cutpoint rays starting at $L, L_*$, with singularities as described above. As $\Re(z) \to -\infty$, the slog(z) goes to -2, which is why I plotted slog(z)+2 to clearly show the $2\pi i $ periodicity with the color scheme. slog complex plane color graph

Here is the first hundred terms of the Taylor series of the slog_e. There are also other series that can more accurately model the slog_e near the complicated singularities at $L,L_*$. $\text{slog}_e(\exp(z))=\text{slog}_e(z)+1$.

{slog_e= -1
+x^ 1*  0.91594605649953339394967263891032
+x^ 2*  0.24935459867217304387907166944528
+x^ 3* -0.11046475979643135746607533024113
+x^ 4* -0.093936255099858708217545606058116
+x^ 5*  0.010003233293231556268045830495254
+x^ 6*  0.035897921594543110618950776632916
+x^ 7*  0.0065734010996050689861230456990895
+x^ 8* -0.012306859518184388390698826117960
+x^ 9* -0.0063898025691574691602827842912150
+x^10*  0.0032735898228172571682934496248516
+x^11*  0.0037692029528282809768491722057889
+x^12* -0.00028021701953697471612650300661624
+x^13* -0.0017751065571964635452910750478656
+x^14* -0.00042796995752466489499544074140193
+x^15*  0.00067972326124433799915122307763671
+x^16*  0.00041279261816576876344756847550979
+x^17* -0.00018659778377522007216227597428180
+x^18* -0.00025354919841673139820000022220552
+x^19*  7.4743292230859159508845400782777 E-6
+x^20*  0.00012316690792994008949854358346366
+x^21*  3.5922663688255789962101084527153 E-5
+x^22* -4.7714769106894440140185737036581 E-5
+x^23* -3.2728894879570046968281427009195 E-5
+x^24*  1.2587032850983583477498753296235 E-5
+x^25*  2.0005706279691047241384964918513 E-5
+x^26*  3.2842188698675583747013803674720 E-7
+x^27* -9.6975319887811898276153653504946 E-6
+x^28* -3.3104476823470459491907579438858 E-6
+x^29*  3.7022485508821417673925648908136 E-6
+x^30*  2.8404870122954097096808674785778 E-6
+x^31* -9.0737312872109425587565965201034 E-7
+x^32* -1.7054258369478897175157963081899 E-6
+x^33* -1.0576693052112761911321947247017 E-7
+x^34*  8.1495968735655247174256864363926 E-7
+x^35*  3.1937891238269198741680309557055 E-7
+x^36* -3.0280395274458979000623748503068 E-7
+x^37* -2.5911360921313840084882480305856 E-7
+x^38*  6.6868095070603114950880805570779 E-8
+x^39*  1.5204798537758210623609343187706 E-7
+x^40*  1.6301016761044110759935918671630 E-8
+x^41* -7.1192841056432460172899424937098 E-8
+x^42* -3.1620313655942554923802804719972 E-8
+x^43*  2.5526841167583406725308322278951 E-8
+x^44*  2.4375733411197076318962288720125 E-8
+x^45* -4.8838555181558910998082138086155 E-9
+x^46* -1.3949235790470789197298547345055 E-8
+x^47* -2.1226304945558390541412374320599 E-9
+x^48*  6.3753353252596922560464962445836 E-9
+x^49*  3.1806800671536187820314187070972 E-9
+x^50* -2.1896012579736475121941178881625 E-9
+x^51* -2.3403072910061732335329472990763 E-9
+x^52*  3.4136133144018747464502233191015 E-10
+x^53*  1.3046905271131667292169957937767 E-9
+x^54*  2.5724224311024605390306563065135 E-10
+x^55* -5.8036697192393781584164401488270 E-10
+x^56* -3.2323741175011580887729173115788 E-10
+x^57*  1.8944957773634817988995039653972 E-10
+x^58*  2.2787720567744936268119612796172 E-10
+x^59* -2.1432744669588805909132887632694 E-11
+x^60* -1.2368477736673219990384744388216 E-10
+x^61* -2.9996670030898727092933030906936 E-11
+x^62*  5.3412002271253626894710419237817 E-11
+x^63*  3.3073364855273689546653535177378 E-11
+x^64* -1.6422253947413308327695888956641 E-11
+x^65* -2.2411182074707036309594005254344 E-11
+x^66*  9.9568563629289019569358026219569 E-13
+x^67*  1.1837711163540173953735103689490 E-11
+x^68*  3.4162749687017856143160948752437 E-12
+x^69* -4.9499350910317732362319934759526 E-12
+x^70* -3.3995510236854808327117200955064 E-12
+x^71*  1.4173530026531213985945653866548 E-12
+x^72*  2.2199575135380734013257625243236 E-12
+x^73*  7.7306983433235355537684571603954 E-15
+x^74* -1.1406258173323262673055943073274 E-12
+x^75* -3.8296992865127142828197787353721 E-13
+x^76*  4.6053917446720561921525761660904 E-13
+x^77*  3.5050214201761905640144194023581 E-13
+x^78* -1.2097872800963289090440971306122 E-13
+x^79* -2.2103686876313257663390624204471 E-13
+x^80* -1.1075090741027686344235056908491 E-14
+x^81*  1.1041532948693875538375111092679 E-13
+x^82*  4.2447927445730743939515044347137 E-14
+x^83* -4.2908739244489275195920348171312 E-14
+x^84* -3.6208975711510447697628808177529 E-14
+x^85*  1.0125785823502194070297215185508 E-14
+x^86*  2.2088758713239255305425800133942 E-14
+x^87*  2.1169117053808372559518071698590 E-15
+x^88* -1.0720366203063015895720502796536 E-14
+x^89* -4.6647827054390360310378249343481 E-15
+x^90*  3.9944201294454251948397146766935 E-15
+x^91*  3.7450021535619073502453574593365 E-15
+x^92* -8.2072240448199233273423331392960 E-16
+x^93* -2.2128873404178268982479418652488 E-15
+x^94* -3.1212949283448632379933357176179 E-16
+x^95*  1.0425463134101588928319198256967 E-15
+x^96*  5.0918131316758276029595543369157 E-16
+x^97* -3.7070743227553540698510341620135 E-16
+x^98* -3.8755571641599134525222731914916 E-16
+x^99*  6.3047193945059414287930643119759 E-17
+x^100*  2.2203689248809139938792939474699 E-16 }
Related Question