[Math] Calculus cardboard box problem

calculusmaximum-principle

I have a question regarding a rectangular box. The question is:

What are the dimensions of a rectangular box of greatest volume that can be constructed from 400 square inches of cardboard if the base is a square?Assume that the box has no top.

I know that that volume is length times height and width. But I am not sure how to set up a formula to solve the problem.

Best Answer

Let's say the base is an $x \times x$ square, and call height $y$.

Since you know volume is length $\times$ width $\times$ height, we have that

$yx^2 = V\tag{1}$

You also know that you have $400$ square inches to work with.

The surface area of the box is $x^2$ (the area of the bottom of the box - no top since its to be an open box), plus $4\times x\times y$, the area of the 4 sides of the box.

So, $x^2 + 4xy = 400\tag{2}$

Now, we can use equatins $(1), (2)$ to put together a formula for maximizing Volume:

From $(2)$: $4xy = 400 - x^2 \iff y = \dfrac{400 - x^2}{4x}\tag{3}$

Substituting for $y$ from equation $(3)$ into equation $(1)$ gives us:

$$V = x^2y = x^2\left(\dfrac{400 - x^2}{4x}\right)$$ $$ \iff V = \frac{x(400-x^2)}{4} = \frac 14 x(400 - x^2) = 100x - \frac 14 x^3\tag{4}$$

Now, to maximize V, in terms of x, we differentiate $V$, set $V' = 0$, and determine critical points to test for maximums.

In your derivative, you'll find you get a difference of squares, which factors fairly nicely, revealing the possible roots for $x$: one positive, one negative. So your maximum is going to have to occur when $x = $ positive root.

Once you've found $x_{\text{max}}$, use this to solve for $y$ (height), using equation $(3)$, and once you have $y$, you're ready to compute the maximum possible volume of the box (given the constraint of the total available cardboard) using equation $(1)$ and substituting into that equation the values you obtain for $x_{\text{max}}$ and $y$ to solve for V = volume, in cubic inches.