Calculus – Integrating Functions with Trigonometric Powers

calculusindefinite-integralsintegration

Solve the following indefinite integrals:

$$
\begin{align}
&(1)\;\;\int\frac{1}{\sin^3 x+\cos^3 x}dx\\
&(2)\;\;\int\frac{1}{\sin^5 x+\cos^5 x}dx
\end{align}
$$

My Attempt for $(1)$:

$$
\begin{align}
I &= \int\frac{1}{\sin^3 x+\cos ^3 x}\;dx\\
&= \int\frac{1}{\left(\sin x+\cos x\right)\left(\sin^2 x+\cos ^2 x-\sin x \cos x\right)}\;dx\\
&= \int\frac{1}{\left(\sin x+\cos x\right)\left(1-\sin x\cos x\right)}\;dx\\
&= \frac{1}{3}\int \left(\frac{2}{\left(\sin x+\cos x\right)}+\frac{\left(\sin x+\cos x \right)}{\left(1-\sin x\cos x\right)}\right)\;dx\\
&= \frac{2}{3}\int\frac{1}{\sin x+\cos x}\;dx + \frac{1}{3}\int\frac{\sin x+\cos x}{1-\sin x\cos x}\;dx
\end{align}
$$

Using the identities

$$
\sin x = \frac{2\tan \frac{x}{2}}{1+\tan ^2 \frac{x}{2}},\;\cos x = \frac{1-\tan ^2 \frac{x}{2}}{1+\tan^2 \frac{x}{2}}
$$

we can transform the integral to

$$I = \frac{1}{3}\int\frac{\left(\tan \frac{x}{2}\right)^{'}}{1-\tan^2 \frac{x}{2}+2\tan \frac{x}{2}}\;dx+\frac{2}{3}\int\frac{\left(\sin x- \cos x\right)^{'}}{1+(\sin x-\cos x)^2}\;dx
$$

The integral is easy to calculate from here.

My Attempt for $(2)$:

$$
\begin{align}
J &= \int\frac{1}{\sin^5 x+\cos ^5 x}\;dx\\
&= \int\frac{1}{\left(\sin x+\cos x\right)\left(\sin^4 x -\sin^3 x\cos x+\sin^2 x\cos^2 x-\sin x\cos^3 x+\cos^4 x\right)}\;dx\\
&= \int\frac{1}{(\sin x+\cos x)(1-2\sin^2 x\cos^2 x-\sin x\cos x+\sin^2 x\cos^2 x)}\;dx\\
&= \int\frac{1}{\left(\sin x+\cos x\right)\left(1-\sin x\cos x-\left(\sin x\cos x\right)^2\right)}\;dx
\end{align}
$$

How can I solve $(2)$ from this point?

Best Answer

Given $$\displaystyle \int\frac{1}{\sin^5 x+\cos^5 x}dx$$

First we will simplify $$\sin^5 x+\cos^5 x = \left(\sin^2 x+\cos^2 x\right)\cdot \left(\sin^3 x+\cos^3 x\right) - \sin ^2x\cdot \cos ^2x\left(\sin x+\cos x\right)$$

$$\displaystyle \sin^5 x+\cos^5 x= (\sin x+\cos x)\cdot (1-\sin x\cdot \cos x-\cos^2 x\cdot \sin^2x)$$

So Integral is $$\displaystyle \int\frac{1}{\sin^5 x+\cos^5 x}dx $$

$$\displaystyle = \int\frac{1}{(\sin x+\cos x)\cdot (1-\sin x\cdot \cos x-\cos^2 x\cdot \sin^2x)}dx$$

$$\displaystyle = \int \frac{(\sin x+\cos x)}{(\sin x+\cos x)^2\cdot (1-\sin x\cdot \cos x-\cos^2 x\cdot \sin^2x)}dx$$

$$\displaystyle = \int \frac{(\sin x+\cos x)}{(1+\sin 2x)\cdot (1-\sin x\cdot \cos x-\cos^2 x\cdot \sin^2x)}dx$$

Let $$(\sin x-\cos x) = t\;,$$ Then $$(\cos +\sin x)dx = dt$$ and $$(1-\sin 2x) = t^2\Rightarrow (1+\sin 2x) = (2-t^2)$$

So Integral Convert into $$\displaystyle = 4\int\frac{1}{(2-t^2)\cdot(5-t^4)}dt = 4\int\frac{1}{(t^2-2)\cdot (t^2-\sqrt{5})\cdot (t^2+\sqrt{5})}dt$$

Now Using partial fraction, we get

$$\displaystyle = 4\int \left[\frac{1}{2-t^2}+\frac{1}{(2-\sqrt{5})\cdot 2\sqrt{5}\cdot (\sqrt{5}-t^2)}+\frac{1}{(2+\sqrt{5})\cdot 2\sqrt{5}\cdot (\sqrt{5}+t^2)}\right]dt$$

$$ = \displaystyle \sqrt{2}\ln \left|\frac{\sqrt{2}+t}{\sqrt{2}-t}\right|+\frac{1}{(2-\sqrt{5})\cdot 5^{\frac{3}{4}}}\cdot \ln \left|\frac{5^{\frac{1}{4}}+t}{5^{\frac{1}{4}}-t}\right|+\frac{2}{(2+\sqrt{5})\cdot 5^{\frac{3}{4}}}\cdot \tan^{-1}\left(\frac{t}{5^{\frac{1}{4}}}\right)+\mathbb{C}$$

where $$t=(\sin x-\cos x)$$