Trigonometry – Calculating Complex Trigonometric Product Involving Square Roots and Tangents

trigonometry

What is the easiest way to calculate :

$$(\sqrt{3} + \tan (1^\circ)).((\sqrt{3} +\tan(2^\circ))…((\sqrt{3}+\tan(29^\circ)) $$

Best Answer

$\sqrt3+\tan(30^\circ-x)=\sqrt3+\frac{\frac{1}{\sqrt3}-\tan x}{1+ \frac{1}{\sqrt3}\tan x}$ $=\sqrt 3+\frac{1-\sqrt 3 \tan x}{\sqrt 3+\tan x}=\frac{4}{\sqrt 3+\tan x}$

$$\Longrightarrow(\sqrt 3+\tan(30^\circ-x))(\sqrt 3+\tan x)=4$$

Put $x=1,2,....,14^\circ$.

To complete, $x=15^\circ$, $(\sqrt 3+\tan(30^\circ-15^\circ))(\sqrt 3+\tan 15^\circ)=4$

$\implies (\sqrt 3+\tan 15^\circ)^2=4\implies \sqrt 3+\tan 15^\circ=2$ as $\tan 15^\circ>0$.

So, the answer should be $4^{14}\cdot 2=2^{29}$

A little generalization : Assuming $A≠n\frac{\pi}{2}$(where $n$ is any integer) so that $\cot A$ and $\tan A$ are non-zero finite,

$\cot A+ \tan(A-y)= \cot A+ \frac{\tan A-\tan y}{1+\tan A\tan y}=\frac{\cot A + \tan A}{1+\tan A\tan y}=\frac{\csc^2A}{\cot A + \tan y}$ (multiplying the numerator & the denominator by $\cot A$)

$\implies (\cot A+ \tan(A-y))(\cot A + \tan y)=\csc^2A $ , here $A=30^\circ$.