[Math] Calculate the limit: $\lim_{n\to+\infty}\sum_{k=1}^n\frac{\sin{\frac{k\pi}n}}{n}$ Using definite integral between the interval $[0,1]$.

calculusdefinite integralsintegration

Calculate the limit: $\lim_{n\to+\infty}\sum_{k=1}^n\frac{\sin{\frac{k\pi}n}}{n}$ Using definite integral between the interval $[0,1]$.

It seems to me like a Riemann integral definition:

$\sum_{k=1}^n\frac{\sin{\frac{k\pi}{n}}}{n}=\frac1n(\sin{\frac{\pi}n}+…+\sin\pi)$

So $\Delta x=\frac 1n$ and $f(x)=\sin(\frac{\pi x}n)$ (Not sure about $f(x))$

How do i proceed from this point?

Best Answer

HINT:

Using this, $$\sum_{1\le r\le n}\sin \frac{\pi r}n=\frac{\sin \left( n\cdot \frac{\pi}{2n}\right)}{\sin \frac \pi{2n}}\cdot \sin \left(\frac{2\frac\pi n+(n-1)\frac{\pi}n}2\right)=\frac{\sin\left(\frac{(n+1)\pi}{2n}\right)}{\sin \frac \pi{2n}}$$

Now, $\sin\left(\frac{(n+1)\pi}{2n}\right)=\sin\left(\frac\pi2+\frac\pi{2n}\right)=\cos \frac\pi{2n}\implies \lim_{n\to\infty}\sin\left(\frac{(n+1)\pi}{2n}\right)=1$

$$\lim_{n\to\infty}\frac 1{n\sin \frac \pi{2n}}=\lim_{h\to0}\frac {2h}{\pi\sin h }(\text{ putting } \frac \pi{2n}=h)$$

$$\implies \lim_{n\to\infty}\frac 1{n\sin \frac \pi{2n}}=\frac2\pi\cdot\lim_{h\to0}\frac h{\sin h }=\frac2\pi$$