[Math] Calculate $\lim_{x \to 1^{-}} \frac{\arccos{x}}{\sqrt{1-x}}$ without using L’Hôpital’s rule.

calculuslimits-without-lhopital

Question:

Calculate

$$\lim_{x \to 1^{-}} \frac{\arccos{x}}{\sqrt{1-x}}$$

without using L'Hôpital's rule.

Attempted solution:

A spontaneous substitution of t = $\arccos{x}$ gives:

$$\lim_{x \to 1^{-}} \frac{\arccos{x}}{\sqrt{1-x}} = \lim_{t \to 0^{+}} \frac{t}{\sqrt{1-\cos{t}}}$$

Using the half-angle formula for $\sin \frac{t}{2}$:

$$\lim_{t \to 0^{+}} \frac{t}{\sqrt{1-\cos{t}}} = \lim_{t \to 0^{+}} \frac{t}{\sqrt{2 \sin^{2}{(\frac{t}{2})}}} = \lim_{t \to 0^{+}} \frac{t}{\sqrt{2}\sin{(\frac{t}{2})}}$$

Forcing a standard limit:

$$\lim_{t \to 0^{+}} \frac{t}{\sqrt{2}\sin{(\frac{t}{2})}} = \lim_{t \to 0^{+}} \frac{\frac{t}{2}}{\frac{\sqrt{2}}{2}\sin{(\frac{t}{2})}} = \frac{2}{\sqrt{2}}$$

However, this is not correct as the limit is $\sqrt{2}$. Where have I gone wrong?

Best Answer

HINT: $$\frac{2}{\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{2}\cdot \sqrt{2}}=\sqrt{2}$$

Related Question