[Math] Calculate Inverse Discrete Time Fourier Transform

fourier analysissignal processing

Calculate Inverse Discrete Time Fourier Transform of the following where $|a| < 1$:

$$
X(e^{j\omega}) = \frac{1-a^2}{(1-ae^{-j\omega})(1-ae^{j\omega})}
$$

Plugging this directly into the IDTFT equation, I get:

\begin{align*}
x[n] &= \frac{1}{2\pi} \int_{-\pi}^\pi X(e^{j\omega}) e^{j \omega n} d\omega \\
x[n] &= \frac{1}{2\pi} \int_{-\pi}^\pi
\frac{(1-a^2)e^{j \omega n}}{(1-ae^{-j\omega})(1-ae^{j\omega})} d\omega \\
\end{align*}

I am having trouble getting started. I'm not sure what to try. None of the standard Fourier Transform property laws seem to directly apply to this.

(This is problem 2.57 from Oppenheim textbook on Discrete Time Signal Processing)

Best Answer

Writing $z=e^{j\omega}$ and using partial fraction expansion, you can rewrite $X(z)$ as

$$X(z)=\frac{a}{z-a}+\frac{1}{1-az}\tag{1}$$

The two terms in $(1)$ are DTFTs (or $\mathcal{Z}$-transforms) of basic sequences:

$$\frac{a}{z-a}\Longleftrightarrow a^nu[n-1]\\ \frac{1}{1-az}\Longleftrightarrow a^{-n}u[-n]\tag{2}$$

where $u[n]$ is the unit step, and where $|a|<1$ has been taken into account. Combining the expressions in $(2)$ results in

$$x[n]=a^nu[n-1]+a^{-n}u[-n]=a^{|n|}$$

Related Question