[Math] Calculate an integral involving Hermite polynomials

calculusintegrationorthogonal-polynomialsspecial functions

I have to calculate the integral

$$\frac{1}{\sqrt{2^nn!}\sqrt{2^ll!}}\frac{1}{\sqrt{\pi}}\int_{-\infty}^{+\infty}H_n(x)e^{-x^2+kx}H_l(x)\;\mathrm{d}x$$

where $H_n(x)$ is the $n^{th}$ Hermite polynomial and prove that it equals

$$\sqrt{\frac{m_<!}{m_>!}}\left(\frac{k}{\sqrt{2}}\right)^{|n-l|}L_{m_<}^{|n-l|}\left(-\frac{k^2}{2}\right)\exp\left(\frac{k^2}{4}\right)$$

where $m_<$ and $m_>$ denote the smaller and the larger respectively of the two indices $n$ and $l$ and where $L_n^m$ are the associated Laguerre polynomials.

The last term is $\exp(k^2/4)$, hence I suppose that I begin with

$$\frac{1}{\sqrt{2^nn!}\sqrt{2^ll!}}\frac{1}{\sqrt{\pi}}\int_{-\infty}^{+\infty}H_n(x)e^{-x^2+kx-\frac{k^2}{4}}e^{\frac{k^2}{4}}H_l(x)\;\mathrm{d}x$$
$$\frac{1}{\sqrt{2^nn!}\sqrt{2^ll!}}\frac{1}{\sqrt{\pi}}e^{\frac{k^2}{4}}\int_{-\infty}^{+\infty}H_n(x)e^{-(x-\frac{k}{2})^2}H_l(x)\;\mathrm{d}x$$

but here I'm stuck…
Thanks for your help!

Best Answer

Finally I found how to do it. I post it, if someone is interested.

\begin{align} D_{ln}(\varkappa) &= \frac{1}{\sqrt{2^nn!}\sqrt{2^ll!}}\frac{1}{\sqrt{\pi}}\int_{-\infty}^{+\infty}H_n(\tilde{x})e^{-\tilde{x}^2+\varkappa \tilde{x}}H_l(\tilde{x})\;\mathrm{d}\tilde{x} \notag\\ &= \frac{1}{\sqrt{2^nn!}\sqrt{2^ll!}}\frac{1}{\sqrt{\pi}}\int_{-\infty}^{+\infty}H_n(\tilde{x})e^{-\tilde{x}^2+\varkappa \tilde{x}-\varkappa^2/4}e^{\varkappa^2/4}H_l(\tilde{x})\;\mathrm{d}\tilde{x} \notag\\ &= \frac{1}{\sqrt{2^nn!}\sqrt{2^ll!}}\frac{1}{\sqrt{\pi}}e^{\varkappa^2/4}\underbrace{\int_{-\infty}^{+\infty}H_n(\tilde{x})e^{-(\tilde{x}-\varkappa/2)^2}H_l(\tilde{x})\;\mathrm{d}\tilde{x}}_I \end{align}

If we pose $x = \tilde{x}-\frac{\varkappa}{2}$ in this expression, the integral $I$ becomes

\begin{equation*} I = \int_{-\infty}^{+\infty}H_n(x+\varkappa/2)e^{-x^2}H_l(x+\varkappa/2)\;\mathrm{d}x \end{equation*}

We know that

\begin{equation*} H_n(x+a) = \sum_{p=0}^n \frac{n!}{(n-p)!p!}(2a)^{n-p}H_p(x) \end{equation*}

Hence, the integral $I$ becomes

\begin{align*} I &= \int_{-\infty}^{+\infty} \sum_{p=0}^n \frac{n!}{(n-p)!p!}\varkappa^{n-p}H_p(x) e^{-x^2} \sum_{q=0}^l \frac{l!}{(l-q)!q!}\varkappa^{l-q}H_q(x)\;\mathrm{d}x \\ &= \sum_{p=0}^n\sum_{q=0}^l \frac{n!}{(n-p)!p!}\varkappa^{n-p}\frac{l!}{(l-q)!q!}\varkappa^{l-q}\int_{-\infty}^{+\infty}H_p(x) e^{-x^2}H_q(x)\;\mathrm{d}x \\ \end{align*}

The Hermite polynomials are orthogonal in the range $(-\infty,\infty)$ with respect to the weighting function $e^{-x^2}$ and satisfy

\begin{alignat*}{2} &&&\int_{-\infty}^{+\infty}H_p(x) e^{-x^2}H_q(x)\;\mathrm{d}x = \sqrt{\pi}2^pp!\;\delta_{pq} \\ &\Rightarrow\quad&& I = \sum_{p=0}^n\sum_{q=0}^l \frac{n!}{(n-p)!p!}\frac{l!}{(l-q)!q!}\varkappa^{n+l-p-q}\cdot \sqrt{\pi}2^pp!\;\delta_{pq} \end{alignat*}

As this integral is nil if we have not $p=q$, we can replace the two sums by only one that goes from 0 to $\min(n,l)$. Let us say that $n<l$. Hence, the full expression for the $D$-matrix is

\begin{align} D_{ln}(\varkappa) &= \frac{1}{\sqrt{2^nn!}\sqrt{2^ll!}}\frac{1}{\sqrt{\pi}}e^{\varkappa^2/4} \sum_{p=0}^n \frac{n!}{(n-p)!p!}\frac{l!}{(l-p)!p!}2^pp!\sqrt{\pi}\;\varkappa^{n+l-2p} \notag\\ &= \frac{\varkappa^{n+l}}{\sqrt{2^nn!}\sqrt{2^ll!}}e^{\varkappa^2/4} \sum_{p=0}^n \frac{n!}{(n-p)!p!}\frac{l!}{(l-p)!}2^p\;\varkappa^{-2p} \notag\\ &= \sqrt{\frac{n!}{l!}}\left(\frac{\varkappa}{\sqrt{2}}\right)^{n+l}e^{\varkappa^2/4} \sum_{p=0}^n \frac{l!}{(n-p)!(l-p)!p!}\left(\frac{\varkappa^2}{2}\right)^{-p} \notag\\ &= \sqrt{\frac{n!}{l!}}\left(\frac{\varkappa}{\sqrt{2}}\right)^{l-n}e^{\varkappa^2/4} \sum_{p=0}^n \frac{l!}{(n-p)!(l-p)!p!}\left(\frac{\varkappa^2}{2}\right)^{n-p} \end{align}

Associated Laguerre polynomials $L_a^b(x)$ are given by

\begin{equation*} L_a^b(x) = \sum_{k=0}^{a}(-1)^k \frac{(a+b)!}{(a-k)!(b+k)!k!}x^k \end{equation*}

It suggests us to transform the expression of the $D$-matrix by posing $k=n-p$. Hence, we have

\begin{align} D_{ln}(\varkappa) &= \sqrt{\frac{n!}{l!}}\left(\frac{\varkappa}{\sqrt{2}}\right)^{l-n}e^{\varkappa^2/4} \sum_{k=n}^0 \frac{(l)!}{(n-(n-k))!(l-(n-k))!(n-k)!}\left(\frac{\varkappa^2}{2}\right)^{n-(n-k)} \notag\\ &= \sqrt{\frac{n!}{l!}}\left(\frac{\varkappa}{\sqrt{2}}\right)^{l-n}e^{\varkappa^2/4} \sum_{k=0}^n \frac{l!}{k!(l-n+k)!(n-k)!}\left(\frac{\varkappa^2}{2}\right)^{k} \notag\\ &= \sqrt{\frac{n!}{l!}}\left(\frac{\varkappa}{\sqrt{2}}\right)^{l-n}e^{\varkappa^2/4} \sum_{k=0}^n (-1)^k\frac{([l-n]+n)!}{(n-k)!([l-n]+k)!k!}\left(-\frac{\varkappa^2}{2}\right)^{k} \notag\\ &= \sqrt{\frac{n!}{l!}}\left(\frac{\varkappa}{\sqrt{2}}\right)^{l-n}e^{\varkappa^2/4}L_n^{l-n}\left(-\frac{\varkappa^2}{2}\right) \end{align}

It should be remembered that we had supposed that $n<l$. But that could be otherwise. In order to be general, $n_<$ and $n_>$ will be defined as $n_<=\min{(n,l)}$ and $n_>=\max{(n,l)}$ and $l-n=|l-n|$. We then have

\begin{equation} D_{ln}(\varkappa) = \sqrt{\frac{n_<!}{n_>!}}\left(\frac{\varkappa}{\sqrt{2}}\right)^{|l-n|}L_{n_<}^{|l-n|}\left(-\frac{\varkappa^2}{2}\right)e^{\varkappa^2/4} \end{equation}

Related Question