[Math] Bivariate Normal Distribution: Finding the joint distribution of functions of random variables

statistics

I need your help with this problem: Suppose $(X, Y)'$ follows a Bivariate Normal Distribution with parameters $μ_1 ,μ_2, σ_1^2, σ_2^2$, and $ρ$. Let $U = X + Y$ and $V = X – Y$. Considering that $X$ and $Y$ are not independent random variables, how will I get the joint distribution of $U$ and $V$. Thanks in advance!

Best Answer

The vector $(X,Y)$ is gaussian and $(U,V)=(X+Y,X-Y)$ is a linear function of $(X,Y)$ hence $(U,V)$ is gaussian as well. In particular, the distribution of $(U,V)$ is characterized by its mean vector $M$ and covariance matrix $C$. By definition, $$ M=\begin{pmatrix}\mathbb E(U) \\ \mathbb E(V)\end{pmatrix},\qquad C=\begin{pmatrix}\mathrm{var}(U) & \mathrm{cov}(U,V)\\ \mathrm{cov}(U,V)&\mathrm{var}(V) \end{pmatrix}, $$ with

  • $\mathbb E(U)=\mu_X+\mu_Y$, $\mathbb E(V)=\mu_X-\mu_Y$,
  • $\mathrm{var}(U)=\mathrm{var}(X)+\mathrm{var}(Y)+2\mathrm{cov}(X,Y)=\sigma_X^2+\sigma_Y^2+2\varrho$,
  • $\mathrm{var}(V)=\mathrm{var}(X)+\mathrm{var}(Y)-2\mathrm{cov}(X,Y)=\sigma_X^2+\sigma_Y^2-2\varrho$,
  • $\mathrm{cov}(U,V)=\mathrm{var}(X)-\mathrm{var}(Y)=\sigma_X^2-\sigma_Y^2$.

Except when $\varrho^2=\sigma_X^2\sigma_Y^2$, the distribution of $(U,V)$ has a density $f_{U,V}$, defined by $$ f_{U,V}(u,v)=\frac1{2\pi\sqrt{\det C}}\exp\left(-\frac12\left(u-\mathbb E(U),v-\mathbb E(V)\right)^*C^{-1}\left(u-\mathbb E(U),v-\mathbb E(V)\right)\right). $$

Related Question