[Math] Binomial Coefficients with fractions: $\binom {m-\frac 12}m=\frac 1{2^{2m}}\binom {2m}m$.

binomial-coefficients

From my earlier question here and the interesting solutions posted, we find interesting equivalents converting binomial coefficients with fractions to those without, e.g.
$$\binom {m-\frac 12}m=\frac 1{2^{2m}}\binom {2m}m$$
and
$$\binom {n+\frac 12}n=\frac {n+1}{2^{2n+1}}\binom {2n+2}{n+1}$$

Are there any "rules of thumb" for quickly converting a binomial coefficient with fractions into a binomial coefficient without fractions, adjusted with a coefficient as necessary?

Further edit:

The purpose of this question is not to derive the above (that has already been done elsewhere) but to ask if there is a handy rule of thumb for converting one form to another (with basis provided, of course).

Another example might be
$$\binom {m-\frac 34}m$$
Perhaps one could consider a fractional binomial coefficient of the form
$$\binom {m-\frac pq}m$$
and see if that can be converted into a binomial coefficient of integer parameters.

Best Answer

$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} {m - 1/2 \choose m} & = {\pars{m - 1/2}! \over m!\pars{-1/2}!}= {\Gamma\pars{m + 1/2} \over m!\,\Gamma\pars{1/2}} \\[5mm] & = {1 \over m!\,\root{\pi}}\,\ \overbrace{{\root{2\pi}2^{1/2 - 2m}\,\Gamma\pars{2m} \over \Gamma\pars{m}}} ^{\ds{\color{#f00}{\large\S}}\,,\ \Gamma\pars{m + 1/2}}\,,\quad \pars{~\Gamma\pars{1 \over 2} = \root{\pi}~} \\[5mm] & = {1 \over 2^{2m - 1}}\,{\pars{2m - 1}! \over m!\pars{m - 1}!} = {1 \over 2^{2m - 1}}\,{\pars{2m}!/\pars{2m} \over m!\pars{m!/m}} \\[5mm] & = {1 \over 2^{2m}}\,{\pars{2m}! \over m!\, m!} = \color{#f00}{{1 \over 2^{2m}}{2m \choose m}} \end{align} $\ds{\color{#f00}{\large\S}:\ \Gamma\!-\!Duplication\ Formula}$. See $\ds{\mathbf{6.1.18}}$ in Abramowitz & Stegun Table.

Note that there are several useful ways to express $\ds{2m \choose m}$:

$$ {2m \choose m} = 2^{2m}{m - 1/2 \choose m} = 2^{2m}\bracks{{-1/2 \choose m}\pars{-1}^{m}} = {-1/2 \choose m}\pars{-4}^{m} = {-1/2 \choose -1/2 - m}\pars{-4}^{m} $$

The other one is quite similar to this one.