Probability – Average Distance Between Random Points on a Line Segment

probability

Suppose I have a line segment of length $L$. I now select two points at random along the segment. What is the expected value of the distance between the two points, and why?

Best Answer

Byron has already answered your question, but I will attempt to provide a detailed solution...

Let $X$ be a random variable uniformly distributed over $[0,L]$, i.e., the probability density function of $X$ is the following

$$f_X (x) = \begin{cases} \frac{1}{L} & \textrm{if} \quad{} x \in [0,L]\\ 0 & \textrm{otherwise}\end{cases}$$

Let us randomly pick two points in $[0,L]$ independently. Let us denote those by $X_1$ and $X_2$, which are random variables distributed according to $f_X$. The distance between the two points is a new random variable

$$Y = |X_1 - X_2|$$

Hence, we would like to find the expected value $\mathbb{E}(Y) = \mathbb{E}( |X_1 - X_2| )$. Let us introduce function $g$

$$g (x_1,x_2) = |x_1 - x_2| = \begin{cases} x_1 - x_2 & \textrm{if} \quad{} x_1 \geq x_2\\ x_2 - x_1 & \textrm{if} \quad{} x_2 \geq x_1\end{cases}$$

Since the two points are picked independently, the joint probability density function is the product of the pdf's of $X_1$ and $X_2$, i.e., $f_{X_1 X_2} (x_1, x_2) = f_{X_1} (x_1) f_{X_2} (x_2) = 1 / L^2$ in $[0,L] \times [0,L]$. Therefore, the expected value $\mathbb{E}(Y) = \mathbb{E}(g(X_1,X_2))$ is given by

$$\begin{align} \mathbb{E}(Y) &= \displaystyle\int_{0}^L\int_{0}^L g(x_1,x_2) \, f_{X_1 X_2} (x_1, x_2) \,d x_1 \, d x_2\\[6pt] &= \frac{1}{L^2} \int_0^L\int_0^L |x_1 - x_2| \,d x_1 \, d x_2\\[6pt] &= \frac{1}{L^2} \int_0^L\int_0^{x_1} (x_1 - x_2) \,d x_2 \, d x_1 + \frac{1}{L^2} \int_0^L\int_{x_1}^L (x_2 - x_1) \,d x_2 \, d x_1\\[6pt] &= \frac{L^3}{6 L^2} + \frac{L^3}{6 L^2} = \frac{L}{3}\end{align}$$