[Math] Asymptotic approximation to exponential integral

asymptoticsintegration

I have been asked to find the asymptotic approximation to the integral

$$E_n(x) = \int_1^\infty t^{-n}e^{-xt}\,{\rm d}t$$

where $n={\rm ord}(1)$ and $x\to\infty$ and then estimate the remainder.

I don't really have any clue how to do this however I have attempted something. Write

$$e^{-xt} = \sum_{k=0}^\infty \frac{(-xt)^k}{k!}$$

then

$$E_n(x) = \sum_{k=0}^\infty \frac{(-x)^k}{k!}\int_1^\infty t^{k-n}\,{\rm d}t$$

However I'm not sure how to evaluate that integral. Could someone help?

Best Answer

As $k>n-1$ the integral in the decomposition you proposes diverges. You can write the original integral as $$\exp(-x)\int_0^\infty (1+u)^{-n}\exp(-ux)du$$ and integrate by parts several times. Firstly $$E_n(x)=e^{-x}\left[\frac{1}{x}-\frac{n}{x}\int_0^\infty (1+u)^{-n-1}e^{-ux}du\right]$$ which gives the first order term. Going on gives you the following terms. Up to the first order $$E_n(x)=\frac{e^{-x}}{x}+O(x^{-2}e^{-x})$$

Related Question