[Math] Arrange these functions in descending order: $\tan x^{\tan x}$, $\tan x^{\cot x}$, $\cot x^{\tan x}$, $\cot x^{\cot x}$, for $x\in(0,\pi/4)$

real-analysistrigonometry

Given $$t_1=\tan x^{\tan x}$$
$$t_2=\tan x^{\cot x}$$
$$t_3=\cot x^{\tan x}$$
$$t_4=\cot x^{\cot x}$$
for $x\in(0, \frac{\pi}{4})$. Arrange them in descending order.

I tried in this way:

in $(0, \frac{\pi}{4})$ from the graphs of $\tan x$ and $\cot x$ $$\cot x \gt \tan x$$ and in $(0, \frac{\pi}{4})$ both are positive we have
$$\cot x^{\cot x} \gt \tan x^{\cot x}$$ that is

$$t_4 \gt t_2$$ and similarly

$$\cot x^{\tan x} \gt \tan x^{\tan x}$$ that is

$$t_3 \gt t_1$$

Now only comparison left is between $t_4$ and $t_1$.

if $f(x)=x^x$ it is decreasing in $(0, \frac{1}{e})$ and increasing from $(\frac{1}{e}, \frac{\pi}{4})$

so in $(0, \frac{1}{e})$ since $\cot x \gt \tan x$ we get
$$\cot x^{\cot x} \lt \tan x^{\tan x}$$ that is

$$t_4 \lt t_1$$

hence in $(0, \frac{1}{e})$ $$t_3 \gt t_1 \gt t_4 \gt t_2$$

and in $(\frac{1}{e}, \frac{\pi}{4})$ since $x^x$ is increasing we get $$\cot x^{\cot x} \gt \tan x^{\tan x}$$ that is

$$t_4 \gt t_1$$

but i cannot arrange them in decreasing order in $(\frac{1}{e}, \frac{\pi}{4})$

Best Answer

Set $y = \tan x$. Then $y \in (0,1)$ and

  • $t_1 = y^y$
  • $t_2 = y^{1/y}$
  • $t_3 = y^{-y}$
  • $t_4 = y^{-1/y}$

We got rid of the noise. Since $\log$ in increasing, this is the same of comparing

  • $\log t_1 = y \log y$
  • $\log t_2 = \dfrac{1}{y} \log y$
  • $\log t_3 = -y \log y$
  • $\log t_4 = -\dfrac{1}{y} \log y$

It's obvious that $$-\frac{1}{y} < -y < y < \frac{1}{y}$$ Multiplying by $\log y <0$ we get $$-\frac{1}{y}\log y > -y\log y > y \log y > \frac{1}{y} \log y$$

which means $$t_4>t_3>t_1>t_2$$