[Math] Area of triangle formed by angle bisector, altitude and median

complex numberscoordinate systemseuclidean-geometryvectors

Question:-
Given a triangle ABC with side length a, b and c. Calculate the area of a triangle in terms of a, b and c formed by angle bisector from vertex A, altitude from vertex B and median from vertex C.

looking for solution using complex number, vectors and co-ordinate geometry
Regards,
vishal

Best Answer

enter image description hereenter image description here

Given $\triangle ABC$, $BC=a,\ AC=b,\ AB=c$; $\angle BAD=\angle CAD$, $BE\perp AC$, $AF=BF$, $\angle BAC=\alpha$, $\angle BCA=\gamma$.

First, define coordinates of the points $A,B,C,E$ and $F$: \begin{align} A &=(0,0),\\ B &=(c\cos\alpha,c\sin\alpha), \\ C &=(b,0),\\ E &=(c\cos(\alpha),0),\\ F &=(c/2\cos\alpha,c/2\sin\alpha) \\ \end{align}

Coordinates of the point $D$ can be defined as follows: \begin{align} D_y &= x\tan\gamma = (b-x)\tan\frac{\alpha}{2}, \\ x&=\frac{b}{\tan\gamma+\tan\frac{\alpha}{2}}, \\ D&=\left( \frac{b}{\tan\frac{\alpha}{2}(1+\tan\frac{\alpha}{2}/\tan\gamma)} ,\frac{b}{1+\tan\frac{\alpha}{2}/\tan\gamma} \right). \end{align}

Next, find the intersection points $U=AD \cap CF$, $V=AD \cap BE$, $W=BE \cap CF$:

\begin{align} U&=\left( c b \frac{1+\cos\alpha}{c+2 b} , c b \frac{\sin\alpha}{c+2 b} \right) \\ V &= \left( c\cos\alpha, c\cos\alpha\frac{(1-\cos\alpha)}{\sin\alpha} \right) \\ W &= \left(c \cos(\alpha),c\sin(\alpha) \frac{b-c\cos(\alpha)}{2b-c\cos(\alpha)} \right) \end{align}

\begin{align} S_{\triangle UVW} &= |(V_x-U_x)(W_y-U_y)-(V_y-U_y)(W_x-U_x)|/2. \end{align}

Finally, after substitution $\sin\alpha=\sqrt{1-\cos^2\alpha}$, $\cos\alpha=\frac{b^2+c^2-a^2}{2bc}$ and simplification, the area of $\triangle UVW$ is given in terms of $a,b$ and $c$ by quite a nice construction: \begin{align} S_{\triangle UVW} &= \frac{1}{4} \sqrt{\frac{(a-b+c)(a+b-c)}{(a+b+c)(b+c-a)}} \frac{\left(b^3-b^2 c+b c^2+c^3-a^2 (b+c)\right)^2} {b|3 b^2-c^2+a^2| (c+2 b)} .\quad(*) \end{align}

Test:

the first triangle: $a=8$, $b=10$, $c=12$, $S_{\triangle UVW}=3.266386$,

the second triangle: $a=8$, $b=10$, $c=15$, $S_{\triangle UVW}=16.835510$.

And as expected, when $a=b=c$, $S_{\triangle UVW}=0.$

Edit:

Equation (*) also reveals another extreme case, when the altitude $BE$ is parallel to the median $CF$ and $S_{\triangle UVW}=\infty$ due to the condition $3 b^2-c^2+a^2=0$ in the denominator:

enter image description here

Indeed in this case, $c^2-(2b)^2=a^2-b^2$.

Related Question