[Math] Are there complete Graeco-Latin squares

combinatoricslatin-square

Are there two orthogonal complete Latin squares of any order greater than 1? If so, what is the smallest order for which they exist?

(A Latin square of order $n$ is an $n\times n$ array of symbols $\{ s_1\ldots s_n \}$ such that each of the symbols appears exactly once in each row and in each column. Two Latin squares $L_{ij}$ and $G_{ij}$ are orthogonal if each of the $n^2$ pairs $(L_{ij}, G_{ij})$ is distinct; such a pair together form a Graeco-Latin square. A Latin square $L_{ij}$ is complete if each of the $n\cdot(n-1)$ pairs $(L_{ij}, L_{i+1,j})$ is distinct and if each of the $n\cdot(n-1)$ pairs $(L_{ij}, L_{i,j+1})$ is distinct.)

Best Answer

The problem is open no longer. It turns out that there are many pairs of orthogonal complete Latin squares of order 12. Here is one example. I also know how to build some bigger ones.

\begin{pmatrix} 1 & 2 & 5 & 7 & 4 & 8 & 9 &11 & 6 &12 &10 & 3\\ 7 &12 & 9 & 3 &10 & 2 & 1 & 5 & 8 & 4 & 6 &11\\ 2 & 3 & 6 & 8 & 5 & 9 &10 &12 & 1 & 7 &11 & 4\\ 8 & 7 &10 & 4 &11 & 3 & 2 & 6 & 9 & 5 & 1 &12\\ 10 & 9 &12 & 6 & 7 & 5 & 4 & 2 &11 & 1 & 3 & 8\\ 3 & 4 & 1 & 9 & 6 &10 &11 & 7 & 2 & 8 &12 & 5\\ 9 & 8 &11 & 5 &12 & 4 & 3 & 1 &10 & 6 & 2 & 7\\ 12 &11 & 8 & 2 & 9 & 1 & 6 & 4 & 7 & 3 & 5 &10\\ 11 &10 & 7 & 1 & 8 & 6 & 5 & 3 &12 & 2 & 4 & 9\\ 6 & 1 & 4 &12 & 3 & 7 & 8 &10 & 5 &11 & 9 & 2\\ 4 & 5 & 2 &10 & 1 &11 &12 & 8 & 3 & 9 & 7 & 6\\ 5 & 6 & 3 &11 & 2 &12 & 7 & 9 & 4 &10 & 8 & 1 \end{pmatrix}

\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 &10 &11 &12\\ 6 & 4 &11 & 2 & 8 & 1 & 9 & 5 & 7 &12 & 3 &10\\ 4 &10 & 7 & 1 &11 & 9 & 3 &12 & 6 & 2 & 5 & 8\\ 9 & 1 & 5 &10 &12 & 4 & 6 &11 & 3 & 8 & 7 & 2\\ 2 &12 & 9 & 6 & 3 & 7 &11 &10 & 1 & 4 & 8 & 5\\ 3 & 9 &12 & 8 & 2 &10 & 4 & 7 & 5 &11 & 6 & 1\\ 10 & 8 & 6 & 9 & 7 & 3 & 5 & 2 & 4 & 1 &12 &11\\ 5 & 3 & 2 &11 & 1 & 8 &10 & 6 &12 & 7 & 4 & 9\\ 11 & 7 &10 & 5 & 4 &12 & 2 & 9 & 8 & 3 & 1 & 6\\ 8 &11 & 4 & 3 & 6 & 5 &12 & 1 &10 & 9 & 2 & 7\\ 7 & 6 & 8 &12 &10 & 2 & 1 & 3 &11 & 5 & 9 & 4\\ 12 & 5 & 1 & 7 & 9 &11 & 8 & 4 & 2 & 6 &10 & 3 \end{pmatrix}

Related Question