[Math] Are irrational numbers order-isomorphic to real transcendental numbers

algebraic-number-theoryorder-theory

  1. I know that rational numbers are order-isomorphic to real algebraic numbers. Does it imply that irrational numbers are order-isomorphic to real transcendental numbers?
  2. I know that the order type of rationals $\eta$ is a homogeneous order type (meaning that for any two its elements there is an automorphism that sends one to another). Are the order types of irrationals and real transcendental numbers homogeneous as well?

Best Answer

Here’s an answer to part of (2).

The order type of $\mathbb{P}$, the irrationals, is homogeneous, because $\langle\mathbb{P},\le\rangle$ is order-isomorphic to $\langle\mathbb{Z}^\omega,\preceq\rangle$, where $\preceq$ is the lexicographic order, which is order-homogeneous.

To construct the order-isomorphism, enumerate the rationals as $\mathbb{Q}=\{q_n:n\in\omega\}$. Recursively construct open intervals $I_\sigma$ for $\sigma\in\mathbb{Z}^{<\omega}$ to satisfy the following conditions.

  1. $I_{\langle\rangle}=\mathbb{R}$.
  2. If $\langle\rangle\ne\sigma\in\mathbb{Z}^{<\omega}$, $I_\sigma$ is a non-empty open interval with rational endpoints.
  3. For each $n\in\omega$, $q_n$ is an endpoint of some $I_\sigma$ with $|\sigma|\le n+1$.
  4. For each $\sigma\in\mathbb{Z}^{<\omega}$ and $n\in\mathbb{Z}$, $I_{\sigma^\frown n}\subseteq I_\sigma$.
  5. For each $\sigma\in\mathbb{Z}^{<\omega}$ and $n\in\mathbb{Z}$, the right endpoint of $I_{\sigma^\frown n}$ is the left endpoint of $I_{\sigma^\frown (n+1)}$.
  6. For each $\sigma\in\mathbb{Z}^{<\omega}$, $\{I_{\sigma^\frown n}:n\in\mathbb{Z}\}$ covers all of $I_\sigma$ except the endpoints of the intervals $I_{\sigma^\frown n}$.
  7. If $\langle\rangle\ne\sigma\in\mathbb{Z}^{<\omega}$, the length of $I_\sigma$ is less than $2^{-|\sigma|}$.

Clauses (4)-(6) ensure that for each $\sigma\in\mathbb{Z}^{<\omega}$ and $n\in\mathbb{Z}$, $\operatorname{cl}I_{\sigma^\frown n}\subseteq I_\sigma$, so for each $\sigma\in\mathbb{Z}^\omega$, $$\bigcap\limits_{n\in\omega}I_{\sigma\upharpoonright n}\ne\varnothing\;.\tag{1}$$ Clause (7) ensures that the intersection in $(1)$ is at most a singleton, so for each $\sigma\in\mathbb{Z}^\omega$ there is a unique $h(\sigma)\in\mathbb{R}$ such that $$\bigcap\limits_{n\in\omega}I_{\sigma\upharpoonright n}=\{h(\sigma)\}\;.$$ Finally, clause (3) ensures that $h(\sigma)\in\mathbb{P}$, so $h:\mathbb{Z}^\omega\to\mathbb{P}$.

To see that $h$ is an injection, suppose that $\sigma,\tau\in\mathbb{Z}^\omega$, and $\sigma\ne\tau$. Let $n\in\omega$ be minimal such that $\sigma\upharpoonright n\ne\tau\upharpoonright n$; then by construction $I_{\sigma\upharpoonright n}\cap I_{\tau\upharpoonright n}=\varnothing$, so $h(\sigma)\ne h(\tau)$. To see that $h$ is surjective, simply observe that for any $x\in\mathbb{P}$ and any $n\in\omega$ there is a unique $\sigma\in\mathbb{Z}^n$ such that $x\in I_\sigma$. Thus, $h$ is a bijection, and it only remains to check that $h$ is order-preserving.

Suppose that $\sigma,\tau\in\mathbb{Z}^\omega$ with $\sigma\prec\tau$. Let $n\in\omega$ be minimal such that $\sigma(n)\ne\tau(n)$, and let $\varphi=\sigma\upharpoonright n=\tau\upharpoonright n$. Then $h(\sigma),h(\tau)\in I_\varphi$, $h(\sigma)\in I_{\varphi^\frown \sigma(n)}$, $h(\tau)\in I_{\varphi^\frown \tau(n)}$, and $\sigma(n)<\tau(n)$, so $h(\sigma)<h(\tau)$ by clause (5).

Finally, to see that $\langle\mathbb{Z}^\omega,\preceq\rangle$ is order-homogeneous, let $\sigma,\tau\in\mathbb{Z}^\omega$, and define $\delta\in\mathbb{Z}^\omega$ by $\delta(n)=\tau(n)-\sigma(n)$. Then the shift $$s:\mathbb{Z}^\omega\to\mathbb{Z}^\omega:\varphi\mapsto\langle\varphi(n)+\delta(n):n\in\omega\rangle$$ is an order-automorphism of $\langle\mathbb{Z}^\omega,\preceq\rangle$ taking $\sigma$ to $\tau$.

Related Question