[Math] Applied Mathematics: Spherical Polar Coordinates and Newton’s Second Law

applicationsclassical-mechanicsphysicspolar coordinatesspherical coordinates

I've been attempting this question but can't seem to find a solution.

Question:

A particle of mass $m$ moves under the influence of a force which, in spherical polar coordinates, only acts in the radial direction. The force is therefore of the form

$$\boldsymbol{F} =f\boldsymbol{e}_r $$

where $f$ is specified. Hence, using Newton's second law of motion, show that the quantity

$$r^2\dot{\phi}\sin^2\theta$$

is constant during the motion. (where $\dot{\phi}$ is the derivative of $\phi$).

Where $\boldsymbol{e}_r = \sin{\theta}\cos{\phi}\space \boldsymbol{i} +\sin{\theta}\sin{\phi}\space \boldsymbol{j} + \cos{\theta}\space \boldsymbol{k}$

Best Answer

The acceleration in spherical coordinates is given by

$$\eqalign{ & {\bf{a}} = \left( {\ddot r - r{{\dot \theta }^2} - r{{\dot \varphi }^2}{{\sin }^2}\theta } \right){{\bf{e}}_r} \cr & \,\,\,\, + \left( {r\ddot \theta + 2\dot r\dot \varphi - r{{\dot \varphi }^2}\sin \theta \cos \theta } \right){{\bf{e}}_\theta } \cr & \,\,\,\, + \left( {r\ddot \varphi \sin \theta + 2\dot r\dot \varphi \sin \theta + 2r\dot \theta \dot \varphi \cos \theta } \right){{\bf{e}}_\phi } \cr} $$

According to the newtons second law ${\bf{F}}=m{\bf{a}}$ and that ${\bf{F}}=f{\bf{e}}_r$, acceleration component in $\phi$ direction should be zero

$$ {r\ddot \phi \sin\theta + 2\dot r\dot \phi \sin \theta + 2r\dot \theta \dot \phi \cos \theta } =0$$

multiply by $r\sin\theta$ to get

$$\eqalign{ & \,\,\,\,\, {r^2}\left( {\ddot \phi } \right){\sin ^2}\theta + \left( {2\dot rr} \right)\dot \phi {\sin ^2}\theta + {r^2}\dot \phi \left( {2\dot \theta \sin \theta \cos \theta } \right) \cr & = {d \over {dt}}\left( {{r^2}\dot \phi {{\sin }^2}\theta } \right) = 0 \cr} $$

and finally

$${{r^2}\dot \phi {{\sin }^2}\theta }=c$$

Related Question